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Abstract

We demonstrate that wage volatility, measured as the cross-sectional variance of wage
changes in PSID data, is counter-cyclical. We quantify this relationship by estimating the re-
gression coefficient of wage volatility on the national unemployment rate in a multilevel Bayesian
model, then decompose this coefficient into three main factors. During a recession, wage volatil-
ity increases substantially among those workers experiencing spells of unemployment: the cycli-
cal changes in the variance within this group explain about 55% of the cyclical variation in
wage volatility. The variance within the group not experiencing unemployment explains 18%.
Finally, an increase in the fraction of workers experiencing unemployment explains 25%.

We show that a calibrated search-and-matching model of the labor market with on-the-
job search gives a good account of the cyclical variation in idiosyncratic wage risk among those
experiencing unemployment and of the composition effect over the business cycle. We show that
in our model, this result is driven mostly by fluctuations of the reservation wage in response to

labor market conditions.
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1 Introduction

Individuals face a variety of economic risks over their lives. To what degree are these risks shaped
by the aggregate economy? And what are the channels that link the aggregate economy with the
risks and opportunities that individuals face? In this paper, we empirically explore the extent and
sources of business cycle fluctuations in the wage risk faced by individuals. We then consider the
theoretical underpinnings of the patterns of counter-cyclical variation in risk that we document.

Counter-cyclical variation in idiosyncratic risk to the components of labor income (employment,
hours, wages) has well-known macroeconomic consequences. Recessions are not borne equally by
the population and the concentration of economic shocks in a recession tends to reduce the average
level of utility and raise the average marginal utility in the economy. These effects make counter-
cyclical variation in idiosyncratic risk an important component of the analysis of the potential
benefits of aggregate stabilization and asset pricing in models with heterogeneous households facing
incomplete insurance marketsE In particular, research has shown that household heterogeneity and
counter-cyclical variation in idiosyncratic risk can increase the welfare cost of business cycles by
orders of magnitude above Lucas’s (1987) original estimateﬂ To our knowledge, the literature
has not investigated the sources of counter-cyclical variation in idiosyncratic risk or the economic
mechanisms that drive it. A better understanding of the economic mechanisms at work will allow us
to develop structural models of the labor income process that can be used for aggregate stabilization
policy experiments that incorporate the link from aggregate labor market conditions to the risks
faced by households.

To quantify idiosyncratic risk, we focus on the cross-sectional variance of innovations to log

wages in PSID data. Our choice of this cross-sectional moment, which we refer to as

‘wage volatil-
ity,” is motivated by several factors. We focus on wages, as opposed to incomes, because wages are
often taken to be the exogenous source of risk in macroeconomic models. We choose to study the

dispersion in growth rates, as opposed to levels, because they are a plausible indicator of the size

of unanticipated and uninsurable shocks to individuals. Finally, we use the variance to summa-

'For the potential benefits of aggregate stabilization see Imrohoruglul (1989)), |Atkeson and Phelan| (1994), Krusell
and Smith| (1999), Beaudry and Pages (2001)), and references in footnote For asset pricing see |Mankiw| (1986]),
Constantinides and Duffie| (1996]), [Storesletten et al.| (2007)), and Krueger and Lustigf (2010)).

ZSee |Storesletten et al.| (2001)); [Krebs| (2003} 2007); |De Santis| (2007); [Krusell et al.| (2009).



rize the dispersion because it allows us to decompose the overall dispersion into different sources.
While we find wage volatility to be an important and useful feature of the wage process, there are
other features that are also of importance to individuals that we do not consider here, notably the
persistence of the shocks. A fully satisfactory structural model of the wage process should generate
realistic predictions on these dimensions as well.

We measure the counter-cyclical variation in idiosyncratic wage risk by relating wage volatility in
a given year to the national unemployment rate. We do this in the context of a Bayesian multilevel
model. The main result of section [2| is the demonstration of a strong comovement between wage
volatility and the unemployment rate. Our point estimates imply that wage volatility increases
from a level of 0.064 to 0.090 as the unemployment rate rises from three percentage points below
its mean to three percentage points above the mean. Our results in section [2| are related to work by
Storesletten et al.| (2004) who estimate an income process that allows the variance of shocks to differ
between expansions and contractions. The key to the [Storesletten et al.| estimation technique is
the recognition that data on incomes from 1967 onwards will contain information about persistent
income shocks received since the 1930s. As one of our goals is to understand the sources of the
counter-cyclical variation in risk, we cannot use the Storesletten et al.| estimation technique because
covariates, such as data on unemployment spells, are only available for the years since 1967 when our
sample begins. In comparison to [Storesletten et al., we use information on a more limited timespan
of aggregate fluctuations. Nevertheless, we identify a clear and significant counter-cyclical pattern
in wage volatility. While the focus of our paper is on wages, we note in section that when we
apply our methods to data on incomes the resulting estimates are in line with those of |Storesletten
et_al.l

The next step in our analysis is to investigate the sources of counter-cyclical wage volatility in
Section [3| One possible explanation is that unemployment shocks are associated with substantial
and variable effects on wages as a result of losses of firm-specific human capital or changes in job-
specific productivities. As the incidence of unemployment increases in a recession, more individuals
are affected by these shocks leading to greater wage volatility in the aggregate. To explore the role
that this explanation plays in generating counter-cyclical wage volatility, we partition the sample

into two groups according to whether an individual has experienced unemployment in the previous



two years (i.e. the years over which we take the the first-difference in wages). We then perform
a variance decomposition exercise that relates the total variance of wage growth rates (i.e. wage
volatility) to the within group variances, the within group means and the group sizes and we
explore how these components vary with the unemployment rate. Our aim is to decompose the
counter-cyclical variation in wage volatility as opposed to decomposing the entire variance of wage
volatility across time. To accomplish this, we construct a decomposition of the covariance between
wage volatility and the unemployment rate in a way that can be interpreted as decomposing the
OLS regression coefficient of wage volatility regressed on the unemployment rateﬁ

As the incidence of unemployment varies over the cycle, the relative sizes of our two groups
varies with more individuals entering the “unemployment” group in a recession. We find that
this composition effect generates 25% of the counter-cyclical variation in wage volatility. We find
that the majority of the counter-cyclical variation in wage volatility is driven by counter-cyclical
movements in wage volatility among those experiencing unemployment spells. This within group
variance explains 55% of the total despite the fact that this group makes up only around a quarter
of our sample. A further 18% is explained by counter-cyclical movements in the within group
variance of those not experiencing unemployment.

Bayesian multilevel models — also known as hierarchical or mixed models — have received
little attention from macroeconomists (Sims|, |2007) and we believe that we are the first to apply
a multilevel Bayesian model to estimate the relationship between aggregate conditions and mi-
croeconomic data. This approach has several advantages for our application. First, the multilevel
structure incorporates the dependence of cross-sectional moments or parameters on macroeconomic
aggregates in a natural manner. Second, the posterior uncertainty surrounding cross-sectional mo-
ments is incorporated into our posterior uncertainty about the relationship between these moments
and aggregate conditions. Third, multilevel models allow more precise estimation of cross-sectional
moments, which is particularly important when we partition the sample so that there are fewer

observations per year in each cell of the partition. Finally, posterior sampling allows us to quantify

3Decomposition techniques have been used to understand secular trends in inequality. Notable examples are |Juhn
et al.[(1993)) and |[Lemieux] (2006]). The sociology literature has also explored trends in income inequality and recently
Western and Bloome| (2009) have shown how to construct standard errors for Lemieux’s decomposition using Bayesian
methods.



the posterior uncertainty surrounding our decomposition results despite the fact that we perform
complex non-linear transformations of our parameters in our variance decomposition.

In section |4 we turn our attention to the economic mechanisms generating the data with a
focus on search-and-matching frictions. Search-and-matching models provide natural links between
aggregate labor market conditions and the experiences of individual workers. Moreover, researchers
have begun incorporating search-and-matching frictions into models with heterogeneous, risk-averse
workers, which are models that might ultimately be used to assess the welfare consequences of
business cycle fluctuations and aggregate stabilization policies with endogenous labor income riskﬁ
We consider a prototypical search-and-matching model with on-the-job search and ask whether
the observed variation in the job-offer and separation rates can explain the wage volatility patters
that we document. The model does a good job of explaining the counter-cyclical variation in the
variance of wage innovations among those experiencing unemployment and the composition effect,
which we found to the be the two largest sources of variation in wage volatility. Through these
channels, the theoretical model is able to generate 64% of the total effect in the data.

The key mechanism at work in the model is that the job-separation rate increases and the
job-offer rate decreases in a recession, both of which lead an unemployed worker to reduce his
reservation wage. We explore this mechanism with an analytical approximation to the elasticity of
the steady state reservation wage with respect to changes in labor market conditions and use these
results to guide our quantitative analysis. A lower reservation wage means there is a larger support
of the wage distribution and this leads to more volatile wages as workers are climbing up and falling
off a taller wage ladder. In this way, the model generates counter-cyclical wage volatility despite

the fact that the variance of offered wages is constant over the business cycle.

4There are a number of papers that incorporate risk-averse workers with incomplete insurance markets into search-
and-matching models. Of most relevance to our topic are those that also feature aggregate fluctuations. |Gomes et al.
(2001)) model unemployment in the style of [Lucas and Prescott| (1974). Recently, a number of authors have studied
versions of the Diamond-Mortensen-Pissarides search and matching model with risk averse workers and imperfect
consumption insurance (Costain and Reiter, 2005, |2007; [Shao and Silos| [2007; [Rudankol [2009] [2011} [Nakajimal [2010;
Bils et all 2011; [Krusell et al.| 2010; |Jung and Kuester, [2011)). |[Krusell et al. (2011 analyze the roles of search
frictions and productivity shocks in explaining individual labor supply decisions over the business cycle.



2 Wage Volatility and Unemployment

In this section we introduce our multilevel modeling approach and estimate a linear relationship
between the volatility of wages and the unemployment rate. The data we use are from the Panel
Study of Income Dynamics (PSID) covering income in years 1967 to 1992E| We measure wages
as the ratio of annual labor income to annual hours worked and deflate to 1967 dollars using the
CPI-Research price index. We restrict the sample to male heads who were between the ages of
25 and 60 and worked at least 320 hours per year. Students, business owners, and self-employed
individuals are excluded from the analysis. We focus on the first difference of log wages across
years so individuals must be present for two consecutive years in order to be included in our

sample. Appendix [A] provides further details about our sample.

2.1 Multilevel Model

Our statistical model consists of three equations. For an individual ¢ in year ¢, we model the

innovation in log wages as

dwiy ~ N (Xi10 + o, 07) (1)
ap ~ N (Zik,<3) (2)
o7 ~N(Zm,s%), o} >0. (3)

The first line states that the change in an individual’s log wage, dw, is normally distributed. The
mean of this distribution depends on the individual’s demographic characteristics such as age and

education, which are placed in the vector X; ;. We assume that the coefficients on these demographic

STwo considerations influence our choice of years to include in our sample. First, our object of interest is the
first-difference of log annual wages for which we need data on wages in consecutive years. Therefore we cannot make
use of PSID data after 1996 (survey year 1997) after which the PSID switches to a biannual frequency. Second,
there is a structural break in PSID wage volatility around 1993, which has also been documented by |[Heathcote et al.
(2010)). The timing of this break coincides with the switch to a computer-based survey methodology although it is
not clear whether this break represents an actual change in the data generating process or if it is an artifact of the
methodological change. In our analysis, we have found that our findings survive if we model this break as a level
shift in the wage volatility process. We choose, however, to end our sample in 1992 for the sake of simplicity and
ease of exposition. Finally, the switch to the new survey methodology began in survey year 1993 and was completed
in survey year 1994 so our 1992 data have some elements of the new methodology. The inclusion of 1992 does not
exert a strong influence on our results.



characteristics are common across years. In addition, the mean change in wages varies over time
with the oy term. Finally, we allow the variance of the innovation in wages to vary over time as
captured by the o7 term. o7 is our measure of wage volatility for year t.

The second and third lines show the multiple levels of our model as we impose structure on
the parameters of the wage growth distribution and assume that they are drawn from their own,
estimated distributionsﬁ The a4 terms are drawn from a normal distribution, the mean of which is
linearly related to aggregate variables, Z;. We use the national unemployment rate as our measure
of aggregate conditions and this, along with a constant, makes up the vector Z;. Similarly, equation
relates the variance of wage growth to aggregate conditions. As in equation , the mean of
this distribution is linearly related to the national unemployment. Our main object of interest is
the second element of 7, that is the coefficient on the unemployment rate in equation , which
we call Nunemp. As the variance must be positive, we draw from a truncated normal distribution
— in practice, however, the mass of the distribution below zero is so small that this truncation is
practically irrelevant.

By estimating all of the parameters of the model jointly, the posterior uncertainty about 7
reflects the uncertainty about o?. By contrast, one can imagine a two-stage estimation procedure
in which one first estimates equation and then computes o7 from the residuals of this first-stage
regression and uses these estimates as “data” in estimating equation . The difficulty with this
two-stage approach is that the standard errors in the second-stage regression do not reflect the fact
that o7 is itself an estimate. The multilevel model avoids this difficulty by estimating both stages
at once.

Another advantage of the multilevel model is that it provides sharper estimates of o? than
one would obtain from the first-stage regression. The reason is that the multilevel model is able
to pool information across years if the data suggest that dw;; in those years are generated by a
similar process. Consider the meaning of the parameter ¢ 2. If the unemployment rate were the
same in years t and s and ¢,2 ~ 0, then from equation it follows that o? ~ o2, which is to say
that the variance of wage changes in years t and s is the same. If these variances are equal, we

can estimate them more precisely by pooling the data from years t and s to estimate the single

5See (Gelman et al.| (2004) and |Gelman and Hilll (2007) for a discussion of multilevel models.



variance that applies to both years. Alternatively, if ¢ 2 is very large, the implication is that even
if the unemployment rate is the same in years ¢ and s we have no reason to think that o? and o2
should be related. Therefore, we should estimate o? and o2 separately without pooling the data.
In between these extremes, the model can partially pool the data across years by down-weighting
the data from year s when estimating o?.

The amount of pooling that actually occurs in estimating o2 depends on the value of ¢,> which
is itself estimated jointly with the other parameters of the model. This is possible because the
likelihood depends on the parameters of both levels of the model. If the data do not call for
pooling, low values for ¢,2 have low likelihood because the data require (relatively) large errors in
equation or require that equation be fit with similar variances, which is at odds with the
data. Conversely, if the data call for pooling, high values of ¢,2 have low likelihood because the
errors in equation are small so the likelihood can be raised by reducing ¢,2. By following this
logic, the multilevel model is able to pool data across years to the extent called for by the data.
In section we discuss exactly how much sharper our estimates are as a result of this partial
pooling.

By including the unemployment rate in equation , we allow the model to attribute some of

the differences in o7 across years to changes in the unemployment rate. If the unemployment rate

explains some of the variation in o2, our statistical procedure automatically tightens our estimate
of ¢,2. Since equation is our prior for estimating 0,52, a lower value of ¢ 2 implies a sharper prior
on o7. This prior, which is itself estimated from data across years, is the mechanism through which
the model is able to use information from other years to inform the estimate of 2. When the prior
becomes more precise, it has a larger effect on the estimate of o7 and more information is pooled
across years. So if equation fits better, ¢ 2 falls and more information is pooled. In effect, the
inclusion of predictors, such as the unemployment rate, in equation (3) allows the model to identify

dimensions on which we expect o2 to differ between years and therefore pool information more

effectively.



2.1.1 Prior Distributions

We need to specify prior distributions for 6, x, 1, ¢, and ¢,2. Since the first three are regression

coefficients, it is natural to use the non-informative (reference) priors

p(0) < 1 (4)
p(r) x 1 ()
p(n) o 1 (6)

There is sufficient sample size at each level of the model to make the posterior distribution proper.

In the context of an ordinary (single-level) linear regression, the usual choice for a non-informa-
tive reference prior for the variance ¢2 of the error term is p(g2) x ¢~ 2. In the context of multilevel
models, however, |Gelman| (2006) demonstrates that this prior places infinite mass near ¢ = 0,
resulting in an improper posterior distribution, then suggests that weakly informative priors are
used instead, highlighting the advantages of the conditionally conjugate folded-noncentral-¢ family.
Following the recommendation of (Gelman| (2006 and [Polson and Scott| (2011)), we use a special

case of this family, the half-Cauchy priors

plsa) o (s +52) 7" (7)

P(So2) < (S +552) 7 ®)
with sq = 5,2 = 1.

2.1.2 Estimation

We use a Gibbs sampler to draw from the posterior distribution of the parameters of the model.
We partition the parameter space into blocks corresponding to 6, «, &, o, 02, 17, and ¢, and sample
each block in turn. Many of the sampling steps reduce to drawing from an ordinary linear regression
or conjugate distributions, otherwise we use the slice sampler of Neal (2003). Appendix contains

details on the estimation methodology and discusses MCMC convergence.



2.2 Results

mean 5% 25% 50% 75% 95%
Hage —0.0014 -0.0016 -0.0015 -0.0013 -—-0.0012 -0.0011
Ocdu 0.0028 0.0019 0.0024 0.0028 0.0032 0.0038

Kconst 0.0258 0.0202 0.0236 0.0257 0.0279 0.0313
Kunemp —0.6402 —1.0127 —0.7858 —0.6368 —0.4904 —0.2911
S 0.0145 0.0101 0.0123 0.0141 0.0163 0.0201

Tconst 0.0771 0.0741 0.0758 0.0771 0.0784 0.0802
Tunemp 0.4255 0.2257 0.3428 0.4244 0.5077 0.6311
So2 0.0091 0.0068 0.0079 0.0089 0.0099 0.0119

Table 1: Posterior means and quantiles for model parameters.

Table [I] shows the posterior means and quantiles of the parameters of our model. The posterior
mean and median of Nypemp are both 0.42 and the 90% error band extends from 0.22 to about 0.62.
Nunemp can be thought of as the slope of a least squares regression of o? on the unemployment rate.
As such, a positive coefficient implies a positive co-movement. We also note that the sign of 7unemp
is almost unambigously positive: less than 0.2% of the posterior draws are below zero.

To highlight the positive co-movement between these o7 and the unemployment rate, the right-
hand panel of Figure [1| shows a scatter plot of the posterior median of the o? against the unem-
ployment rate. The vertical bars in the figure are 90% error bars for o2. To show the uncertainty
surrounding our estimate of 7, the figure also plots posterior draws of the regression line from
equation . The logic of the multilevel model is that we parameterize the prior distribution on o?
and equation represents the parameterization of this prior. The difference between the points
in the scatter plot and the sample of regression lines is that the regression lines show the variation
in the prior on o? and the scatter plot shows the estimated values of o2, which are a compromise
between the data and the prior.

Even though we are primarily interested in 7ynemp, the posterior distribution of the other pa-
rameters is in line with our expectations: Kunemp is estimated to be negative, which implies that real
wage growth is counter-cyclical (see the left-hand panel of Figure . In the first-level of the model,

the demographic effects show that wage growth declines with age and increases with education.
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Figure 1: Scatter plot of posterior distribution of a; (left panel) and o? (right panel) versus the
unemployment rate in year ¢. Year labels are placed at the posterior medians, vertical bars extend
from the 25% to 5% quantiles and from the 75% to the 95% quantiles. The regression lines are
random draws from the posterior distribution.

2.3 High-Frequency Movements in Wage Volatility

Figure [2| shows the time series variation in the unemployment rate and the posterior distribution
of o. This figure suggests the possibility that the co-movement between wage volatility and the
unemployment rate is driven, at least partially, by slow-moving secular trends. From a theoretical
perspective, this low-frequency variation is informative about the sources of wage volatility: chang-
ing conditions in the labor market can lead to both higher wage volatility and higher unemployment.
Indeed, in section [] we present a theoretical mechanism that provides a close connection between
the unemployment rate and the variance of wage innovations that shows the similar patterns across
years.

Nevertheless, we can still investigate whether our estimate of Nunemp is a good description of
high-frequency movements in wage volatility. To do so, we compare years that are close in time
but differ in aggregate conditions, thus minimizing the possibility of slow-moving trends driving

result. We use the NBER business cycle dates to identify peaks and then choose the years with
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Figure 2: The top panel shows the unemployment rate, the bottom panel shows the posterior
quantiles of 0. The solid line indicates the median, the dashed lines the 25% and 75% quantiles,
and the dotted lines the 5% and 95% quantiles from the posterior.

the lowest and highest unemployment rates between peaks[] The pairs of peaks and troughs we
identify are (1969, 1971), (1973, 1975), (1979, 1982) and (1989, 1992). Using posterior draws of o7,
we calculate the difference in o? for each pair and then compute the average of these differences
across pairs. For each of the four pairs of years, we compute the ratio of the change in o7 over
the change in the unemployment rate over those years. We then average over the four business
cycles. We calculate the posterior distribution of this measure of the slope of the wage-volatility-
unemployment relationship. The results in Table [2] show that the mean and median are both

0.31, which is comparable to the estimate of Nunemp = 0.42 that we obtained from the full sample,

suggesting that our results in Section are robust.

"As we work with annual data, we treat 1980 to 1982 as a single recession.
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mean 5% 25% 50% T75% 95%
031 019 026 031 0.36 0.43

Table 2: Posterior distribution of Aaf /Au; between paired high- and low-unemployment years.
Years are selected based on the highest and lowest unemployment rates between NBER peaks.

2.4 Relation to Previous Work

From the estimated relationship between the unemployment rate and o?, we can develop a sense
of the changes in wage volatility over the business cycle with the following back of the envelope
calculation. Over the course of a typical business cycle in the United States, the unemployment
rate fluctuates by roughly 3 percentage points. Our estimate of Nupemp then implies that o? will
increase by 0.013 as the economy moves from the peak of the cycle to the trough.

Many readers will compare our results to the work of [Storesletten et al.| (2004). Those authors
use data on the income of households inclusive of transfers while we use wages of household heads
so our results are not directly comparable to theirs. Bearing these differences in mind, one might
still ask if our results are plausible in comparison to theirs. Their results imply that the variance
of the first-difference in household earnings increases by about 0.041 as the economy moves from
expansion to contractionﬂ

To facilitate the comparison of our results to theirs, we also estimate the model using labor
income as data instead of wages. All other features of our analysis remain the same. In this case,
the posterior mean of Nypemp is 1.14 with a 90% error band extending from 0.76 to 1.54. Performing
the same back of the envelope calculation as above produces a difference in income volatility of
0.034 as the unemployment rate increases by 3 percentage points. Given the important differences
between their methodology and data and ours, we do not find it surprising that we obtain somewhat

different resultsPl

8 Appendix |C| explains how we reach this conclusion from their results.

9The difference in methodology is that they look at the cross-sectional dispersion in earnings across cohorts who
have lived through different macroeconomic experiences while we look at the dispersion of the first-differences in
booms and recessions. The difference in data is that they look at total household income inclusive of transfers, while
we look at just the labor income of male heads.
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2.5 Impact of Measurement Error

The PSID data on wages are surely affected by measurement error so it is important to consider
how our results are affected. Suppose we measure dw;; = Jz\uivt + ;¢ where dw is the true wage
growth and ¢ is measurement error distributed i.i.d. normal with some mean and variance, v.. Then
it follows from equation that o = 67 + v., where 67 is the variance of (ﬁ)m So measurement
error of this type will shift the intercept in equation , but Nunemp is not affected. More generally,
if the extent of measurement error varies over time it will affect our result to the extent that it

covaries with the unemployment rate.

3 Decomposition

We now investigate the forces that drive the positive co-movement between wage volatility and the
unemployment rate. In section we lay out a methodology for decomposing the slope of a linear
regression of wage volatility on the unemployment rate. The first key step in this decomposition is
that we use observed covariates to partition the sample into groups within each year. We can then
decompose the total variance of wage growth in a year into variances within groups and the variance
between groups. Movements in the total variance over years are then driven by movements in these
within- and between-group variances as well as shifts in the group sizes. The second key step is
to model (statistically) the mean and variance of wage growth within each cell of the partition in
each year. Doing so allows us to capture the posterior uncertainty about the components of the

decomposition and therefore assess the uncertainty about the decomposition results themselves.

3.1 Methods

Suppose that we can partition individuals into J groups within each year based on observed co-
variates. When we apply this methodology below, we form two groups according to whether an
individual has experienced any unemployment spells in the preceding two years and so J = 2, but
we choose to keep our discussion in general terms to emphasize the fact that this methodology
could be applied to any partition of the data. In the sums below, the index j always runs from 1

to J.
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3.1.1 Decomposing 7unemp

We now explain our method for decomposing the slope of a regression of wage volatility on the
unemployment rate, which is closely related to the parameter nunemp that we estimated in section
Given our partition of the data, suppose we know the fraction of individuals in each group and
the mean and variance for wage growth in each group. We can then construct the total variance of

wage growth across all individuals as

of =) Mo+ Y mlar; —a)? =W+ By (9)
J J

2

where o3

is the within-group variance and ay ; is the within-group mean for group j at t. Also,
m¢,; is the fraction of observations in group j at time ¢, and oy and o? are the mean and variance
for all observations.

As is customary, we call the two sums in equation @ within- and between-group variances.
There are two forces that can raise the contribution of the within-group variance. First, the group
fractions, 7 ; might shift towards groups with higher within-group variances. Second, the within-
group variances might increase. In order to separate out these two effects, we further decompose

the within-group variance term using the cyclical deviations from a time-series mean. That is to

say, let
T
_ 1 Z _
Ty = T Tt,4 and dﬂt,j =Tty — T4
t=1

denote the average share of observations in each group and the deviations from this average, and

similarly
1
~2 2 2 2 -
=7 Z g and doi; =0;; — 0
t=1
Then we can write W; as
Wy =Y 7,67+ mdop;+ Y ordm;+ Y dmjdo?; (10)
J J J J

€t

Equation is exact, but we can think of the last term as the second-order error term of a linear

15



approximation, so we will denote it by e;.
Our goal is to decompose the connection between our cyclical indicator, the unemployment rate,
and the overall variance of the wage innovations. We find it convenient to use the OLS regression

slope for this purpose as a summary statistic, which we define as

Munemp = 07/ s (11)

where // is the univariate regression slope, defined for a time series y; as

2 —y)(u —u)  Cov(y,u)
vl v = =N e T Var(u) (12)

This is simply the point estimate of an OLS regression of y; on utH Note that y / u is additive in
yE and thus it can be applied to both sides of @D and to obtain an additive decomposition

O'? J ur = Zﬁj (dat%j / ut) +Z¢7_2j (dﬂ'm / ut) ‘e Jug+ By ) ug (13)
J J error between
cyclical variance of groups composition

The first term summarizes the effect of the variance changing within each group j, this is of course
weighted by the proportion of observations within each group. The second term stands for the effect
of the number of agents changing within each group: even if we held variances constant, the change
in proportions would result in a composition effect. Finally, we have the error and between group
variance terms. We also find it useful to summarize normalized by its left hand side. This
provides a very condensed summary of our results that allow the reader to gauge the contribution
of each effect.

Our decomposition could be applied directly to sample moments computed from the data. Using

sample moments, however, does not give any sense of the uncertainty surrounding the results. To the

0The parameter funemp is closely related to 7unemp, which we estimated above. In the terminology of multilevel
models, the latter is a superpopulation parameter, while the former is called its finite population counterpart. As we
use a flat prior for Nunemp, the two are very close numerically. The advantage of using 7junemp is that it is easy to
visualize and can be decomposed additively as we show here. For a discussion of finite vs superpopulation moments,
see (Gelman and Hill (2007, Chapter 21.2) and |Gelman/ (2005).

1This is easy to check from .
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extent that we partition the sample into small groups, our uncertainty about the sample moments
can be substantial so it is important to account for this uncertainty. We solve this problem by
extending our statistical model to estimate the within-group means and variances. We then draw
these means and variances from the posterior distribution and use these draws to compute the
terms in equation . In doing so, we are calculating the posterior distribution of a function of

our parameters.

3.1.2 Extending the Model

We now extend our statistical model to the mean and variance of wage growth within each cell of
the partition. For an individual ¢ who is in cell j of the partition in year t, the extended model

specifies the following distribution for wage growth

dw'i,t ~ N (Xi,te + at’j[m,aiﬂm) (14)
Qg 5 ~ N(Ztlﬁj,gaj) VJ (15)
O'?’] ~ N (Ztnja §02j) s O'?’] >0 Vj (16)

Equation states that the change in an individual’s log wage, dw;; is normally distributed.
As before, the mean of this distribution depends on the individual’s demographic characteristics
and the coefficients on these demographic characteristics are assumed to be common across groups
and across years. In addition, the mean change in wages varies over time and across groups with
the ay jj; 1 term. The notation j[i,t] refers to the group index for the group that individual i is a
member of at time t. We also allow the variance of the innovation in wages to vary over time and
across groups as captured by the 0t2,j[z‘,t] term. Equations and model the within group
means and variances, respectively. Again, these components are related to aggregate conditions

captured by Z;. Priors are independent for each group, and otherwise have the same form as in

section 2111
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3.2 Decomposing by Unemployment Experience

We apply our decomposition method to the PSID data partitioned by unemployment experience.
In particular for an individual 7 at time ¢, dw;; refers to wage growth between years ¢ — 1 and ¢.
We assign an individual to the “no unemployment” group if this individual reports zero hours of
unemployment for both years t — 1 and t. Those reporting positive hours of unemployment in year

t — 1 or year t are assigned to the “unemployment” groupE

3.2.1 Decomposition Results

Table [3| shows the posterior distribution of the decomposition , in levels and in normalized
form. Panel a) shows the contribution of each component to the total slope 7unemp and Panel b)
expresses these contributions in percentage terms. From Panel b), one can see that counter-cyclical
fluctuations in the within group variances contribute 73% of the total with the unemployment group
contributing the bulk of this (55%). Most of the remainder comes from the composition effect that
arises because the unemployment group has a larger variance at all times and the size of this group
increases during a recession. This composition effect contributes 25% of the total. Finally, the
error in the decomposition and the between variance contribute next to nothing. The table also
shows quantiles for these fractions and one can see that the posterior uncertainty does not change
the overall message.

We view the results in Table |3 as our main empirical results and we now present additional
findings from the extended model to explain the forces that drive our results. Figure [3| plots
our estimates of afy j for both groups. From these plots, one can see that the comovement with the
unemployment rate is much stronger in the unemployment group. While the fluctuation of variance
is relatively small in the no unemployment group, this group is about four times the size of the
unemployment group and thus its contribution is scaled up by a factor of about 0.8 when the term
daz ;18 multiplied by 7; in equation as opposed to 0.2 for the unemployment group.

One way of understanding the benefit of using the multilevel model is to compare the posterior

uncertainty of the af’j’s to the posterior uncertainty that would result without any pooling (e.g.

128ee Appendix [A] for more details.
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Figure 3: Scatter plot of posterior distribution of a;; (top panels) and o2 (bottom panels) versus the
unemployment rate in year ¢, for the “unemployment” (U, left panels) and “no unemployment” (E,
right panels) groups. Dots are placed at the posterior medians, vertical bars extend from the 25%
to 5% quantiles and from the 75% to the 95% quantiles. The regression lines are random draws

from the posterior distribution.
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mean 5% 25% 50% 75% 95%

dod 0.2361 0.1836 0.2147 0.2361 0.2587 0.2900
do? 0.0775 0.0308 0.0574 0.0772 0.0971 0.1244
composition 0.1040 0.0987 0.1018 0.1039 0.1060 0.1095
between 0.0074 0.0014 0.0043 0.0070 0.0100 0.0147
€rror 0.0018 —0.0075 —0.0019 0.0016 0.0057 0.0113

a) decomposition of regression slope

mean 5% 25% 50% 75% 95%
da% 0.5533 0.4732 0.5206 0.5539 0.5866 0.6320
da]% 0.1791 0.0810 0.1404 0.1809 0.2193 0.2722
composition 0.2464 0.2060 0.2269 0.2433 0.2626 0.2952
between 0.0174 0.0033 0.0103 0.0165 0.0236 0.0352
error 0.0038 —0.0186 —0.0045 0.0039 0.0131 0.0248

b) normalized decomposition

Table 3: Absolute (top) and normalized (bottom) decomposition of the regression of wage volatility
on the unemployment rate. The rows of the both tables are the cyclical variation of the volatility
of the unemployed (da%) and employed (da%) groups, followed by the composition effect, and the
within and between variance, as shown in equation . Note that even though the “unemployed”
(U) group makes up only =~ 20% of the sample, it is responsible for more than half of the cyclicality
of the variance. In contrast, the “no unemployment” (E) group only explains about 1/5 of the
cyclicality. Finally, the composition effect explains the rest (about 1/4), and the other terms have
a negligible effect.

from a model with a single level — we specify the details of this model in Appendix [B.3)). This
comparison shows how much posterior uncertainty is eliminated by partially pooling information
across years. Figure 4] displays this comparison, quantifying uncertainty using posterior variances,
for each year. For both groups, the multilevel model tightens our estimates of 01527 ;- The fact that
there is a larger benefit of pooling in the unemployment group reflects the fact that there are fewer
observations in this group and so information contained in the hierarchical prior has a larger impact

on the posterior.
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Figure 4: Posterior variance the ot% ; parameters (by year) for the no unemployment group (left
panel) and unemployment group (right panel), in the multilevel (solid lines) and non-pooling models
(dashed lines). The reduction in posterior variance demonstrates that the parameters of interest
are estimated with a higher precision in the multilevel model.

4 Modeling Wage Risk Over the Business Cycle

We now demonstrate that a standard search-and-matching model of the labor market can generate
most of the counter-cyclical idiosyncratic wage risk that we have documented as a result of business
cycle variation in job-offer and job-separation rates. We focus on a partial equilibrium analysis in
which we take the job-offer and separation rates and the distribution of offered wages as given. In
doing so, we sidestep an important, unresolved question about the magnitude of fluctuations in
labor market conditions (see Shimer} 2005; |Costain and Reiter, [2008)).

Whether the model can generate the counter-cyclical variation in wage volatility that we have
observed in the data is a quantitative question, which we explore with a calibrated version of the
model. Our analysis shows that business cycle fluctuations in the rates at which workers contact
firms and separate from existing matches induces endogenous movements in the reservation wage
that leads to counter-cyclical wage volatility among those workers experiencing unemployment.

The model is also able to generate a composition effect. As movements in the reservation wage
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are an important source of changes in wage volatility, we explore the sensitivity of the steady state
reservation wage to changes in labor market conditions as a way of understanding the factors that
determine the strength of this mechanism. This analysis guides our calibration of the model for

the quantitative analysis that follows.

4.1 Wage-Ladder Model

Consider a partial equilibrium wage ladder model, where the log wage for individual ¢ at time ¢ is
the sum of an aggregate component p;, an individual-specific component a;;, and a match-specific
component x;;

Wit = Pt + Qg + Tig.

A job offer is a draw of a match-specific component from a wage-offer distribution F'(-), which is
exogenous and time invariant. Workers have logarithmic utility, and discount factor 5. Unemployed
workers receive a (log) unemployment benefit p; + a;; + b. An unemployed worker receives a job
offer with probability A\; at time . An employed worker receives a job offer with probability yA; and
moves to unemployment with probability ;. 7 is a parameter that controls the relative efficiency
of on the job search and setting v = 0 gives us a variant of the McCall (1970) model. A; and J; are
the only exogenous sources of variation at the aggregate level.

A worker’s decision problem is whether to accept a job offer. Employed workers accept any
wage that is higher than their current wage. Unemployed workers suffer a reduction in search
efficiency when they accept a job offer and therefore adopt a reservation wage strategy. For ease
of exposition, we first present the steady state version of the model in which A and ¢ are constant.

The Bellman equations for the unemployed and employed workers are

Zj(p7 a,) =p+a-+ b+ ﬂE(plya/7x/) [}\ max(W(p/7 a/’ x’)j U(p/’ a’)) + (1 — A)U(p/7 a/) (17)

W(p,a,z) =p+a+z+BEqy.qa.m [% max (W (p',d’,2"), W (p',d',z)] + 6U (', d)

+ (=N =0W(p,d,x)| (18)
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In Appendix[D.I] we show that the value functions separate linearly into a component that depends
on z;; and one that depends on p; and a;¢, and thus the worker’s search strategy can be analyzed

independently of p; and a; .

4.2 Steady State Comparative Statics for the Reservation Wage

The response of the reservation wage to the job-offer and separation rates turns out to be the most
important source of variation in wage volatility in this model (see Figure@ below). Here, we explore
the sensitivity of the steady state reservation wage to variation in A and 0 to develop intuition for
the features of the model that govern the magnitude of the variation in the reservation wage. This
analysis also informs our choice of calibration moments for the full dynamic model in the following
subsection. Studying the steady state reservation wage is a useful guide to the behavior of the
reservation wage in the full dynamic model and this can be verified ex post.

Unemployed workers use a reservation rule, accepting jobs when x > z*, where

¥ =b+ 51— ’y)/\/oo F() (19)

x*l—ﬁ+55+@wﬁwfm

defines #* and F(z) = 1 — F(z) is the tail probability (see Appendix|[D.1)). With some slight abuse

of terminology, we refer to z* as the reservation wage. Introducing

1 A
r 3 an X = o
and integration by parts allows us to rewrite as
00 ok
ﬁ:b+u—ﬂx/ T Fl(x)de (20)
z* (1 + fny(x))

From it is clear that when the wage offer distribution, the unemployment benefit and the
relative search intensity are fixed, the effect of all other labor market conditions on the reservation
wage can be summarized in x. This is a useful result because the variation in A and § can be

summarized by their effect on .

23



Lemma 1. The steady state elasticitﬁ of the reservation wage x* with respect to x, defined in

equation , can be calculated up to a first-order approrimation as

e X' (% \ )
= (1) (1= (L XM (RaY) (21)
dx + X" T ,
S—— C
A B
where
* Dk AF(CE*) AUE
X' = xF(t) = r+4 :T+5’ (22)

and Ayg s the observed unemployment-employment transition probability,
T=E[z |z > "

1s the expected value of x, conditional on the worker accepting the offer, and

M, (F,z*) = 2My(F )

M, (F, o) ; (which is in the interval [0, 1] for all distributions)

characterizes the tail shape of the distribution, with

R e R
M;(F,z") = W = /m* (F (ac)) dx where F*(z) = Flo)
Proof. See Appendix [D.2] O

Equation informs our calibration strategy for our quantitative analysis of the model. Since

r <9,
« _AUE _1—u

X ~ 5 - w )

the first term, labeled A, is very close to the steady state unemployment rate. Also, x* = Ayg/(d+7)

can be calibrated directly from observed worker flows and the interest rate.

13Tn this paper, we use the notation R
dxy = dlogx

for proportional change.
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The second term in equation is
=—-1 (23)

which measures the expected gain to an unemployed worker of receiving an offer relative to the
reservation wage. The value of this term depends on the distribution F', but it can be calibrated
independently of the job finding and separation probabilities. Hornstein et al.|(2012) show that in a
wide class of search models, the ratio of the average accepted wage and the reservation wage (the
so-called mean-min ratio) can be calibrated using only labor market flows and the replacement ratio
(the ratio of the unemployment benefit and the average wage), and that bringing the mean-min
ratio in line with the data requires a low unemployment benefit. The equation above features a log
mean-min ratio, but it has a similar interpretation. From this term, we take away the implication
that the reservation wage will not be sensitive to y if the mean-min ratio is too low.

Finally, the third term in is
C=1-—71+x"My(F,z")).

This captures the effect of on-the-job search: more effective on-the-job search, a larger value of ~,
reduces the elasticity da* / Eix. One implication is that it is important to include on-the-job search
in the model so as not to overstate the elasticity of the reservation wage. A second implication
is how the shape of the offer distribution affects the response of the reservation wage to labor
market conditions. The term M, ranges from 0 to 1, and captures how self-similar the shape of the

distribution is: the two extremes are the exponential distribution, where

for some parameter a > 0, and the distribution with a single mass point at some x; > x*, where

F(z") =1(x < x1) M; =z, — 2 M, =1
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In this paper we focus on the normal distribution, which is in between these two extremes.
Assessing the effect of M., is made easier by the fact that it is invariant to scale and shift transfor-
mations, and thus it can be discussed independently of the mean and variance of the distribution
of F'. In this case, M, depends only on the fraction of offers that are rejectedE Figure |5| shows
how M, depends on the fraction of offers that are rejected. In our calibration strategy, we target

this rejection rate.
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Figure 5: M, for the standard normal distribution, as a function of the fraction of offers rejected.
See Appendix [D.3] for a derivation of this function.

4.3 Calibration

We now calibrate the wage ladder model in order to quantitatively explore its predictions for wage
volatility over the business cycle. Our time period is 1/48 of a year. Table 4] summarizes the
calibration. We start with parameters that can be matched to observables in a straightforward
manner: we calibrate r to a 4% annual interest rate, set the separation rates § to match the
average of those in Shimer| (2007)) over the years 1968 to 1992, and use a result of Nagypal| (2005)

to calibrate the relative search efficiency + in a manner that is independent of the distributions,

14This is in fact simple to show: let
T— K
S

z =
for some fixed p and s, and F, be the distribution transformed from F accordingly, similarly for z* from z. Since
M, (F,z*) = s M;(F:, 2") fori=1,2,

M, and thus C are unaffected, and only depend on z*.
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description value calibrated to

r  interest rate (1.04)1/ 4 _1 real interest rate
0  separation rate 9.78 x 1073  separation rate in Shimer| (2007)
v relative OTJ search efficiency 0.151 steady state flows, see Section
p  autoregressive coef. for a; 4 0.997 .

. L moments of continuously
o, std. dev. for a;; innovation 0.000385 .
o. std. dev. of measurement error 0.148 employed, see Section
A offer arrival rate 0.245 job finding rate in [Shimer| (2007)
s std. dev. of offer distribution 0.337 matching level of variance
b log unemployment benefit factor —1.619 determined by steady state

Table 4: Calibrated parameters. Time unit is 1/48 of a year.

using only the transition probabilities, particularly the average monthly job-to-job transition rate
of 2.6% as reported by |Fallick and Fleischman| (2004). The details are discussed in Appendix

Our model has two sources of wage changes@ those coming from worker-specific differences
captured by the process a;; and those coming from the search and matching structure, which are
reflected in values of x;;. We also allow for some of the variance in wage growth rates that we
observe in the data to be driven by measurement error. We assume that a;; follows an AR(1)
process, the parameters of which are stable throughout time; we also assume that the extent of
measurement error is also stable throughout time. As these components are not time-varying, their
main role is to create variation in wage growth rates that is not related to search and matching.
Considering that in our model z;; does not change for workers who are continuously employed on
the same job, focusing on this subset of the data allows us to calibrate an AR(1) process for a;;
using variances and autocorrelations. We discuss the calibration of these processes in Appendix

EIl

We assume that the distribution F' is normal and normalize the mean to zero. We choose the

2 so that the model matches the unconditional variance of wage growth rates in our

variance, s
PSID sample.

We make the model match the job finding rate Ayg = AF(z*) using the job finding probabilities

5The aggregate log wage p; also changes, but, as shown in Section does not affect the reservation wage. As
all wages are affected equally by p:, it will not affect the dispersion of wage growth rates and so we do not need to
specify a process for it.
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reported by [Shimer (2007)@ In order to pin down the levels of both A\ and F(2*) we need an
additional moment. Our analysis in section shows that the offer acceptance probability F(z*)
is an important component of the model so we directly calibrate this feature of the model from
survey evidence. Blau and Robins (1990) use data from the Employment Opportunity Pilot Project
baseline survey, which reflected job-search experiences in 1979 and 1980 and found that unemployed
individuals received an average of 0.18 offers per week and 10 percent of the unemployed individuals
accepted an offer of employment per week. These findings imply that around 5/9 of offers received
by unemployed individuals are accepted. The acceptance rate could be somewhat higher if single
individuals received multiple job offers within a weekﬂ Krueger and Mueller| (2011)) conducted a
survey of Unemployment Insurance recipients in the state of New Jersey in late 2009 and found
that about 60% of job offers are accepted. As the labor market was particularly slack in 2009,
we would expect the steady state acceptance rate to be somewhat lower than 60%. Therefore, we
target F(z*) =5/9.

Finally, we note that the log unemployment benefit factor b is determined by the above param-
eters via . As is emphasized by Hornstein et al.| (2012), the model cannot deliver a reasonable
mean-min ratio for wages if the unemployment benefit is calibrated in the standard way. The ben-
efit replacement rate in our calibration is 13%, quite a bit lower than typical calibration strategies.
A low value of b is needed to generate dispersion in wages and wage growth rates: with a dispersed
offer distribution, the returns to search are large and in order to prevent unemployed workers from
rejecting a large fraction of offers we must make the cost of search large as well, hence a low value of
b. Our analysis of the steady state elasticity of the reservation wage shows that the unemployment
benefit does not affect the sensitivity of the reservation wage except through the mean-min ratio.

Therefore, our calibration strategy focuses on matching a measure of wage dispersion rather than

The [Shimer| (2007) and [Fallick and Fleischman| (2004) data are monthly transition probabilities and we must
convert them to weekly probabilities. Suppose L is a monthly probability, then £ = —log(1 — L) is the continuous-
time arrival rate. 1 — exp(—¢/4) is the weekly transition probability implied by the continuous-time process, which
is what we use in our calibration. For the [Shimer| data, we take the average of this value over the years 1968 through
1992, which corresponds to our PSID sample period.

171f offers arrive as a Poisson process within the week then the probability of not accepting an offer during the

week is

—0.18 —0.18 2
018018 . e 018018
o e+ 21

where 0.18 is the weekly offer arrival rate and [F' (x*)]k is the probability of rejecting k offers. Solving this equation
for F'(z*) yields F(z*) = 0.415, which is only slightly below 4/9.

1.0-01=¢e""% 4 [F(z*)” +---
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unemployment benefits.

4.4 Wage Volatility Over the Business Cycle

We conduct the following experiment to assess the ability of the model to generate wage volatility
patterns like those we have documented in the data. We allow the job-offer and separation rates,
A and § respectively, to vary over time so that the model reproduces the observed job-finding and
separation probabilities from 1948 to 2007 reported by Shimer| (2007). When we do this, we assume
that all other parameters of the model are constant through time. Changes in the transition rates
will, however, affect the worker’s choice of reservation wage. In solving the worker’s problem, we
assume that the worker has perfect foresight for the paths of Ay and d;. After 2007, we assume
that the parameters return to their steady state values. As we are focusing on the wage dynamics
from 1968 to 1992, this return to steady state occurs 15 years after the end of the period we are
interested in. We can then simulate a population of workers from 1948 to 1992. We use the steady
state theoretical wage distribution to initialize the simulation in 1948 and the period 1948-1967
acts as burn-in period for our simulation results. We then compare the wage dynamics from 1968
to 1992 to those we found in the PSID data in Sections [2] and [3] Changes in \; and d; can affect
wage dynamics directly as workers move up and fall off the wage ladder more or less quickly, and
indirectly through the reservation wage, as discussed in section 4.2

The job-finding rate is the product of the job-offer rate and the probability that an unemployed
worker accepts an offer, F'(z}). Pro-cyclical movements in the reservation wage imply that the
job-offer rate must be more volatile than the observed job-finding rate. At first glance, this would
seem to make the unemployment volatility puzzle (Shimer} |2005) more severe, however, Menzio and
Shil (2011)) have shown that on-the-job search can lead to more volatility in unemployment albeit
in a richer model with directed search. With regard to the separation rate, we assume that workers
cannot quit into unemployment when we solve for the reservation wage and simulate the model.
Therefore, all separations are exogenous and the separation rate that is fed into the model is the
same that we observe in the data. In our model, a worker would want to quit into unemployment if

he held a low-wage job and then labor market conditions improved leading the reservation wage to
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mean 5% 25% 50% 75% 95%  simulation

dod 0.2361 0.1836 0.2147 0.2361 0.2587 0.2900 0.1913
do? 0.0775 0.0308 0.0574 0.0772 0.0971 0.1244 —0.0212
composition 0.1040 0.0987 0.1018 0.1039 0.1060 0.1095 0.0798
between 0.0074 0.0014 0.0043 0.0070 0.0100 0.0147 0.0227
€rror 0.0018 —-0.0075 —0.0019 0.0016 0.0057 0.0113 —-0.0010

Table 5: Estimated and simulated decomposition. The table contains the empirical decomposition
from Section (top panel of Table [3)), extended with the simulated decomposition.

rise above his current wage. Allowing workers to quit into unemployment results in little bursts of
separations when the reservation wage increases. To offset these endogenous separations, we would
need to reduce the rate of exogenous separations at this time, but there is only so much room to
do so since the separation rate is already low. As a result, we were unable to match the observed
separation rates exactly when we allow these quits to occur.

We find that the model can generate a substantial fraction of the counter-cyclical volatility in
wages, which can be seen in Figure[6] The slope of a linear regression relating the variance of wage
growth rates to the unemployment rate is 0.271 in simulated data, while in our empirical estimates
of Nunemp 1N section [2| we found a posterior mean of 0.426. Table |5 shows a decomposition of this
relationship between those experiencing unemployment and those not experiencing unemployment
as we did empirically in section We see here that model generates cyclical variation in wage
volatility from the variance within the unemployment group and the composition effect and the
magnitudes of these effects are close to our empirical estimates. The contribution from the variance
among those not experiencing unemployment, however, is actually slightly negative as opposed to
mildly positive in the empirical estimates. With the exception of the latter effect, the model gives
a good quantitative account of sources of wage volatility in this decomposition. This can be seen
visually in Figure

As we mentioned, changes in the transition rates have direct effects on the wage distribution and
indirect effects through the reservation wage. We perform two alternative simulation experiments
to demonstrate that it is movements in the reservation wage that are driving our results. Let
{ ¢, d¢, xf}fzo be the offer arrival rates, separation rates and reservation wages from our simulation

from 1948 to 1992 and let A, §, and x=* be their steady state values. First, we simulate the model
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Figure 6: Variance of log wage changes vs unemployment rate for simulated model. Top: variances
from simulated model, displayed with posterior draws from posterior of the relevant multilevel
regression lines of the empirical estimates in Section [2 Note how the model is able to replicate a
significant part of the cyclical variation in the data, but the simulated variance for low values of
unemployment is somewhat higher than in the data. Bottom left: simulated series with transition
rates fixed at their means, time-varying reservation wage same as the calibrated simulation. Bottom
right: reservation wages fixed, transition rates changing. Notice how the the reservation wages
generate almost all the variation, not the transition rates.
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Figure 7: Estimated and simulated decomposition — visualization of Table [5} The horizontal axis
shows the empirical quantiles (using the same convention as the rest of the graphs, 5-25-50-75-95%
quantiles), while the vertical axis shows the simulated decomposition. The letters in the middle
mark the median, with the following legend: (U)nemployed group, no un(E)mployment group,
(c)omposition, (b)etween, (e)rror. The grey line is the 45° diagonal. Note that the model comes
close to matching all parts of the decomposition, with the exception of group E.

with the transition rates held constant at their steady state values, but assuming that workers
use the reservation wage zj in period ¢. The results appear in the bottom left panel of Figure
[fl The slope of a linear regression fit to these data is 0.319. Second, we conduct the opposite
simulation exercise: holding the reservation wage fixed at its steady state value and allowing the
transition rates to fluctuate. The results appear in the bottom right panel of Figure [6]and the slope
of a linear regression in these data is 0.036. From these simulations, it is clear that movements
in the reservation wage are the main source of counter-cyclical wage volatility in our model. An
increase in the reservation wage reduces the dispersion of wage growth rates because when workers
transit through unemployment they re-enter employment at a narrower range of wages. Over the
cycle, increases in the offer arrival rate and decreases in the separation rate increase the value of
searching and raise the reservation wage. Therefore the reservation wage is pro-cyclical, which
induces counter-cyclical movements in the dispersion of wage growth rates.

These alternative simulations also illustrate why the model cannot match the counter-cyclical
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wage volatility among those not experiencing unemployment. Those who do not go through unem-
ployment are unaffected by changes in the reservation wage and as a result their wage dynamics
are only affected by the direct effect of changes in A; and §;, which is a small effect.

The model generates a plausible level of volatility in the reservation wage. Figure [§] shows the
reservation wage relative to its the steady state value. For most of our sample period, the reservation
wage is within 15% of the steady state value. As a final check on our analysis, Figure [9] verifies
that steady state reservation wage, which we analyzed in section [4.2] gives a good approximation

to the behavior of the reservation wage in the full dynamic model.
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Figure 8: Reservation wage relative to steady state value.
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Figure 9: The dots show the (log) reservation wage from the full dynamic model in Section
The line shows the steady state reservation wage implied by inserting contemporaneous values of
A and 4 into equation . This graph demonstrates that (1) y is indeed a good summary of the
labor market conditions, and (2) steady state comparative statics provides a good approximation
to the behavior of the full dynamic model.

5 Conclusion

In this paper, we combine empirical and theoretical approaches to examine cyclical movements
in wage risk. We document that wage volatility increases with the unemployment rate and then
decompose this finding to investigate its sources. We find that the composition effect resulting
from the greater incidence of unemployment during a recession explains about 25% of the cyclical
variation in wage volatility and a further 55% is explained by the cyclical changes in the volatility
of wages among those experiencing unemployment.

A standard, search-theoretic model of the labor market can quantitatively explain these effects.
In the model, the most important source of cyclical changes in wage volatility among agents going
through unemployment is the response of the reservation wage to labor market conditions. We

explore this response both analytically via steady state comparative statics and through dynamic
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simulation. We find that our calibrated model gives a good account of the cyclical variation in
idiosyncratic wage risk among those experiencing unemployment and of the composition effect over
the business cycle. As our empirical estimates imply these components generate around 80% of
the total cyclical variation in wage volatility, we argue that such a model gives a good account of
cyclical variation in idiosyncratic wage risk.

Our findings suggest that search-and-matching models are a promising way forward in incorpo-
rating structural models of the labor market into models of household heterogeneity. However, we
have focused our analysis on an important, but specific, feature of the wage process. As we noted
in the introduction, the persistence of labor market shocks is an important determinant of a house-
hold’s ability to self insure against idiosyncratic shocks and further research is needed to determine
the persistence of the additional shocks that occur in recessions and to assess the performance of
search-and-matching models on this dimension.

Finally, multilevel Bayesian methods provide a natural way of documenting business cycle facts
from microeconomic data and complement variance decomposition techniques. The methods we
have used here can be applied to different cross-sectional moments and different partitions of the

data to investigate other distributional effects of business cycle fluctuations.
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Appendix

A Data Appendix

From the PSID, we use data on the annual labor income of male heads and annual hours of work
to construct annual wages. In addition, we use data on age and education as covariates. We only
include those heads that are between 25 and 60 years of age in both years over which the change
in wages is calculated. We drop those with allocated labor income, students, business owners,
self-employed individuals, and those with zero hours or income. We trim the top 1% of the income
distribution in each year to remove the effect of changes in top-codes across years. Finally, we drop
those with wages less than half of the federal minimum wage in that year and we drop those who
work fewer than 320 hours in a given year. Our results on income changes in section are based
on the same sample, but we use annual labor income without dividing by annual hours.

To construct the unemployment-experience partition, we use data on annual hours of unem-
ployment. Let HtU be the hours of unemployment in year ¢t. The unemployment group at time ¢
includes those individuals who report HtU >0 or Ht[{ 1 > 0. The no-unemployment group is those
individuals for whom HY is equal to zero for both years. For aggregate data, we use the national
unemployment rate reported by the BLS and take the average value of the monthly series within
each year. Figure [10] shows the share of the unemployment group in our sample.
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Figure 10: Share of observations in the “unemployment” group (top panel) displayed along with
the unemployment rate (bottom panel). As expected, unemployment incidence is highly correlated
with the unemployment rate.

Note: the rest of the appendix is available online, from the authors’ webpages.
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Note: the remaining appendices are for online distribution only.

B Methodological Appendix

B.1 The Gibbs sampler

Sampling from the posterior of our model is straightforward and follows Markov Chain Monte Carlo
techniques that are commonly used in Bayesian statistics. There are several alternative methods
for sampling from the posterior (see |Gelman et al.| (2004) for a summary). We found that a block
Gibbs sampler is relatively fast, easy to implement and has good mixing properties (see Section
for a discussion of convergence). A brief summary of the Gibbs sampler we used is given below.

Our model can be summarized by equations —. This model collapses to that in section
if one sets J = 1 with j[i,¢t] = 1 for all 4 and t. We partition the parameter space into blocks
corresponding to 6, o, K, Sa, 02, 1, and 2.

B.1.1 Conditional posterior sampling for 6, a, k, and 7

Each of these parameters can be thought of as the coefficient v in a linear regression
¢~ N(Av, ®) (24)

with a known variance matrix ® = diag(¢) and a given prior v ~ N(II). Table[6|shows the mapping
between and the model parameters. The conditional posterior distribution is normal, and can
be constructed and sampled from in a straightforward manner (Gelman et al., [2004, Sections 14.6
and 14.8).

v c A 10) II
0 [dwivt - O‘t,j[i,t]]i,t [Xivt] it [Utg,j[i»t]]i,t flat
aj [dwig — Xib],, 0o, 1 sl ititia= @
Kj Q. Z Saj flat
n; U%j A So2j flat

Table 6: Conditional posterior sampling for 6, a, x, and

B.1.2 Conditional posterior sampling for the group-level variances ¢, and ¢,

As is well known, if hy ~ N(0,¢?) (iid, k = 1,..., K), then the likelihood is

K
ple | 1) o exp (—M> (25)

2¢2
As discussed above (see Section [2.1.1]), our prior for hyperparameter variances is p(s) oc (¢2+s?) 1.

Then we sample from the conditional posterior using the slice sampler of [Neall (2003]). Table
shows the correspondences between and the model parameters.
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oz.éj —ZKj Saj Sa
07, = 24N So2j o2

Table 7: Conditional posterior sampling for ¢4, ¢ 2

B.1.3 Conditional posterior sampling for o2

Let us fix j and ¢, and only consider the observations in I;; = {(¢,t') : ¢/ = t,j[¢,t'] = j}.

Given and , the conditional posterior for 0'32-715 is

2
2

207}

el S mern,,; ([dwie — Xig — ay 5)?
p(azj | o5, Zt,mj, Sp2) X (sz) exp (_ (4t)El,

’j

0_2 TN 2
exp <_(W77J) 1%2’]20 (26)

2§U2j

This does not correspond to any commonly used family of probability distributions, so we can only
sample from it using general tools. After experimenting with rejection methods and obtaining poor
acceptance rates, we settled on the slice sampling algorithm of |[Neal (2003) with excellent resultsF_g]

B.2 Convergence of the posterior sampler

We monitor the convergence of the Gibbs sampler by calculating the univariate potential scale
reduction factor (PSRF) for each parameter value (Gelman and Rubin| 1992; Brooks and Gelman,
1998; |Gelman et al., [2004). The PSRF uses variances within and between the parallel chains to
estimate the factor by which the scale of the current posterior distribution for a given parameter
might be reduced if we were to obtain a sample of infinite size. In practice, values below 1.1 are
acceptable, unless very high precision is required. We start 5 chains with overdispersed initial
points, calculate the PSRF as the chain evolves for the second half of the chain, and find that it
goes below 1.01-1.05 (depending on the parameter) for all parameters after 1000-2000 iterations,
which suggests that the mixing is excellent. We generate 5000 parameters for each chain, and
discard the first 2500. We found that the mixing was greatly enhanced by subtracting the column
means from X.

B.3 The non-hierarchical model
We estimate a version of the model without hierarchical regressions for comparison.
dwi g ~ N(Xi40 + o jig) Uzj[i,t])
p(0) o< 1
ploy,j) o< 1V, j
pla;) o (o7;)7 vt j

1811 particular, we used the “stepping out” variant of the algorithm from [Neall (2003, Figures 3 and 5).
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It is very straightforward to sample from the posterior of this model: first we sample 6 | o, 02, X (see
Section , then sample from oy j, 03 j | 6, X by sampling from the posterior of the regression
of dw; ¢ — ay jj; 1 on 1 with unknown variance and a reference prior for each ¢, j.

C Comparison to Storesletten et al. (2004)

The purpose of this appendix is to express Storesletten et al.’s results in the same terms as ours
to show that the two are not vastly at odds with one another. Throughout, we take their results
reported in their Table 2, Panel E because these results are calculated on the assumption that
business cycles are defined by the unemployment rate as opposed to GNP growth or NBER cycles
and thus closest to our work.

Storesletten et al. specify the following process for the residual of log earnings of individual ¢

Uip = O + 2t + Eit

Zit = PZit—1 + Nit,

where o; ~ Niid(0,02), & ~ Niid(0,02), and n; ~ Niid(0,0%) in an expansion and 7; ~
Niid(0, U%) in a contraction. In this notation, our interest is in computing the variance of Awug,
which is

Var [Auy] = (p — 1)* Var [zit—1] + Var [n;] + Var [Aey]

Clearly, as p — 1, the first term on the right-hand side goes to zero. This is relevant because
Storesletten et al. estimate p to be close to 1. For now, suppose p = 1, but we return to the issue
below. Since ¢ is distributed identically over time, the Var[Ag;] term is a constant. Thus, the
difference in Var [Au;t] between an expansion and a contraction is just the difference in Var [n;] or
020 . 0'%. Using Storesletten et al.’s estimates, this difference is 0.2462 — 0.138%2 = 0.041. In our
back of the envelope calculation in section we found a difference of 0.013 for wages and 0.034
for earnings.

In the calculation above we ignored the term (p — 1) Var [2;;_1], which will be counter-cyclical
as the variance of z is counter-cyclical. As argued above, this term is small. To see this, consider
two extreme economies, one that is always in an expansion and one that is always in a contraction.
The unconditional variance of z in the expanding economy is then 0% /(1 — p?) and one can similarly
calculate the unconditional variance of z in the contracting economy. The difference between these
two variances is an upper bound on the cyclical fluctuations in Var(z). Using this upper bound,
we conclude that the contribution of the term (p — 1) Var [z;;_1] is at most 0.0013 or 3% of the
0.041 figure we found above.

44 Online appendix



D Proofs for the steady state analysis

D.1 Linear separability and the reservation wage

Using the independence of the stochastic processes, we rewrite (17)) and (18) in terms of

W(p,a,z) =W (z)+ H(p,a)
U(p,a) =U + H(p,a)

where
H(pa CL) =p+a+ BE(p’,a’) [H(pla a/)]
and
U = b+ ABE, max|[W ('), U] (27)
W(z) =z + B (YAEy max|[W (z'), W (2)] + 6U + (1 — 6 — yA)W(x)) (28)

Clearly, W is increasing and the unemployed worker follows a reservation rule. Let z* be the
reservation productivity, defined by
W(x*)=U (29)

Integration by parts yieldﬂ
Ey max[W ('), W(z)] — W(z) = / W' (z')F(z")da’

Then partial differentiation of and the combination of and evaluated at x = z* gives
us .

D.2 Proof of Lemma [I]
Instead of , we work with the equivalent equation

. F A —XF(@)
x —b—l—/x* T ) d (30)

Total differentiation of and a bit of algebra gives us

. _ o F(x
dx* = dxﬁm (1+xF(z)(1—7) /I* (1+X'(yﬁ?(1:))2dx (31)
QM)

19We assume that lim, .o W (2)F(z) = 0. Since W (x) is concave, the existence of the first moment of F is sufficient
for this to happen.
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We derive a first-order approximation for the part denoted Q() by perturbing around v = 0:

Q'(0) = (XF(:L‘*) — 1) /00 F(x)dx — 2y /OO F(a:)de

* *

([ ) (i a5

Finally, obtains from substituting the expansion above into , collecting terms and rear-
ranging.

D.3 Closed-form expressions for the tail characteristics of the standard normal
distribution

Here, we derive a closed-form solution for M., when the offer distribution is normal. As discussed in
footnote it is sufficient to focus on the standard normal. We use ® for the CDF of the standard
normal. Let ®(z) =1 — ®(z), and ¢(z) = ®'(2) = —P’(2). First, we establish the following limit:
for all a € R,
1 > z 22 1 1 a?
T dz < —= —e 2dz=——=-¢ 2dz
" Vo / V2r /a a V2ra

and thus

Then using the transformatioﬂ

/:q>(z)dz:[q>(z . /¢ (2 — 2 / V%e_zjzdz—z*é(z*)

=0, because of .

we obtain the following closed-form solution:

and similarly,

/OO 2 (z)dz = [®(2)(z — )| 2 + /OO 20(2)p(2) (2 — 2*)dz

-~

=0, because of

= 2" 0%(2*) + 28(2%)p(2*) — /OO 20%(2)dz = —2* (%) + 28(2") (") — 7 /2B (V22")

2%

20The result also follows from Stein’s Lemma, eg Lange (2010] p 40).
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can be used to show that

o) 1p®V22) L (34)

MZ(Z*) :2&)(2*) ™ @2(2*)

Finally, M, is given by 2 Ma(2*)/ My (2*) — 1.

E Additional discussion of calibration

E.1 Calibration of the stochastic process for a,
According to our model, in year ¢, the log wage of a continuously employed individual is given by

48

1
wy = log [48 ;exp (ai(s) + x¢(s)) | + €,

where s indexes the weeks within year ¢t and ¢; is measurement error. If we restrict our attention
to those on the same job, then the value of x(s) is constant within and across years. As a result,
the change in the log wage is given by

Awt =A IOg + AEt.

1 48
5 2o ()

We will write this as
Awt = AAt + Aﬁt,

where A; is the log-sum term above. A; will follow a stationary stochastic process that depends on
the underlying AR(1) for the a process with parameters p and o.
The autocovariances of Aw; are

Var (Aw;) = 2 Var (A;) — 2Cov (A, Ar—1) + 2 Var (&)
Cov (Awg, Awy—1) = — Var (A¢) — Cov (A, A¢—2) — Var (&)
Cov (Awt, Awt_g) =2Cov (At, At_g) — Cov (At, At—l) — Cov (At, At_3) .

We simulate the process a;(s) and use it to construct A;. To calibrate the model, we choose p, o,
and Var () to minimize the sum of squared differences between the simulated autocovariances and
the same moments computed from the data. To compute the moments in the data, we use our same
PSID Samplelzr] but restrict our attention to individuals with levels of tenure on the job high enough
that the differences in wages and the covariances across years involve wages from the same job. For
instance, Cov (Awy, Awy_3) involves wy, - - - ,wy—3 and so we require that the only individuals with
job tenure of at least 48 + [interview month] months enters into this calculation. The results are
Var (Aw;) = .04623, Cov (Awy, Awi—1) = —.016702, and Cov (Awy, Aw_9) = —.000987. We also
find the unconditional variance of wage growth rates to be 0.078037.

2n a first-stage regression we remove age, education and year effects as we do in Sections 2| and
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E.2 Calibration of the relative search efficiency v

Nagypal (2005) shows that in wage-ladder models it is possible to calibrate the relative search
efficiency (or equivalently, the job finding rate) of employed workers merely from the observed
transition rates, without specifying the offer distribution. We give a concise summary of the method
here and show how it applies in our model.

In steady state, the unemployment rate satisfies

AF(2*)u = §(1 — u) (35)

where the left and right hand sides are the mass of workers matched or separated each period,
respectively. Let G(x) denote the cross-sectional fraction of employed workers with match-specific
productivity below z. Then flow balance requires that

A(F (@) ~ F(e))u = G(a) (8 + YAF(2)) (1 - ) (36)

The left hand side is the flow of workers from unemployment to employment below a particular x
— we need to subtract F'(z*) because no offers are accepted below the reservation x*. The right
hand side accounts for exogenous separations and upward transitions on the wage ladder.

We introduce )\F( ) \
x*
=15 =" gE (37)

which is equal to the ratio of the job finding and separation probabilities, corrected by =, the
relative search efficiency of the employed. All but the last are directly observable from flow data.
Below we calibrate ¢ (and this 7) in a manner independent of the actual distributions F' or G, or
the reservation x*. Then we rewrite using , and the normalized tail distribution ™

(defined in (I)) as
1— F*(z) = G(z)(1 + ¢F*(z))
which we can rearrange as -
1—F*
o) - L= F @)
1+ pF*(x)
It follows immediately that the cross-sectional distribution of individual-specific productivities only
depends on the transition rates via ¢, which we will calibrate directly from flows. It is useful to

rearrange a@

(38)

_ 1+
F'(z)=——F+~——1 39
PP (x) = 1o (39)
We follow Nagypal (2005) in calibrating ¢ directly. Consider the average job-to-job transition
probability

AEE = YA /(:O F(z)dG(x)

221t is also easy to obtain the inverse from : when G(z) =y,

_ 1— _ 1—
F*(z) = 1+5y and thus z=Ft ( Y )

which is useful for initializing the simulation.
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which we can rewrite as

% = /;o ©F*(2)dG(z) = /::3 1o ol j;&x)d(}(x) -1

Using the substitution y = G(z), we arrive at

(40)

)\EE 1+(,0
— = log(1 -1
5 . og(1+¢)

where the left hand side is observable from flow data, and the right hand side is a monotone
increasing function of ¢, with limits of 0 and oo at ¢ — 0 and ¢ — oo, respectively.
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Figure 11: Calibration of ¢. The solid line shows the right hand side of , while the dotted
line shows the target value of A\gg/d, where we target a monthly job-to-job transition probability
of 2.6% (Fallick and Fleischman), [2004)), converted to a weekly rate, and the separation rate from

Table [d We solve numerically for ¢ = 2.106.
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