
Consistent local approximation in continuous time

Tamás K. Papp
∗

April 19, 2017

Abstract

Analysis of the approximation method of Den Haan, Kobielarz, and Rendahl (2015) and Levintal

(2016), applied to the deterministic Ramsey model in continuous time. I show that while the method

is easy to set up, solving the nonlinear system requires nontrivial methods for even a simple system,

and once solved, the resulting residuals of the Euler equation are large compared to collocation

methods, but still small enough in absolute magitude to make the model useful in practice, especially

for making an initial guess about functional forms in collocations methods.

See the repository at h�ps://github.com/tpapp/consistent-local-continuous for the accompanying code in

Julia.

Introduction. Continuous time models have been used extensively in macroeconomics, �nance, and

other �elds
1

However, while in �nance it is common practice to solve continuous models numerically,
2

in macroeconomics practical applications of numerical methods usually focus on discrete time prob-

lems, despite the fact that some commonly used textbooks on numerical methods address continuous-

time methods.
3

While one of the reasons for this may be unfamiliarity with continuous-time building blocks such

as Itô and Lévy processes,
4

the other di�culty is �nding a solution to the resulting functional equa-

tions. When using projection methods, functional forms that describe optimal choices and values are

approximated using function families with �nitely many parameters. Since in continuous time there

is no general contraction mapping equivalent to value iteration in discrete time, usually the only op-

tion is to solve these problems using general nonlinear solvers, which are not guaranteed to converge,

especially when the starting point is not close enough to the solution.
5

Den Haan, Kobielarz, and Rendahl (2015) propose a method for �nding approximate solutions to

discrete time systems described by a functional equation, by approximating policy functions with a

linear (or similarly simple) form and imposing consistency between present and future policies around

a particular state. Levintal (2016) proposed a similar method, while a very similar approach can be

found in Krusell, Kuruşçu, and Smith (2002, Appendix B). In this short note I show that this method

can be applied to continuous time systems, and examine its practicality and accuracy in the context

of one of the simplest continuous time models, the deterministic Ramsey model. �e advantage of
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this model is that it is relatively well-studied,
6

and despite its simplicity, it is su�cient for making the

following points about the proposed method in continuous time:

1. �e method is fast, but the resulting nonlinear system may have multiple roots even in a simple

se�ing, so that it must be solved with care, preferably from a good initial guess. In this note I

used continuation methods, starting from around the steady state.

2. �e method less accurate compared to collocation methods: Euler equation residuals deteriorate

very quickly with distance form the steady state. For example, at half the steady state capital, the

relative residual was 10−2, while a simple collocation method with 10 Chebyshev polynomials

can easily achieve 10−4. However, it is still more than accurate enough as a starting point for a

nonlinear solver, so it can be used as an initial guess about the functional form for collocation

methods.

3. �e method is good at capturing the general shape of the policy function even near singularities,

where collocation methods usually break down without transformations.

Setup. Consider a deterministic Ramsey model in continuous time, with CRRA utility function (IES

θ), discount rate ρ, production function

F (k) = Akα − δk

where kt is the capital stock, which develops according to the capital accumulation equation

k̇t = F (kt)− ct (1)

where ct is consumption. �e most frequently used form of the Euler equation, usually obtained from

the Hamiltonian, is
7

ċt
ct

=
1

θ

(
F ′(kt)− ρ

)
(2)

First, I rewrite this into a recursive form. We are solving for the policy function c(k), and thus

ċ = c′(k)k̇ = c′(k)
(
F (k)− c(k)

)
where I have used (1) and dropped time indices. Plugging into (2), we obtain

c′(k)

c(k)

(
F (k)− c(k)

)
=

1

θ

(
F ′(k)− ρ

)
(3)

We cast this into the form

c′(k)
(
F (k)− c(k)

)
=

1

θ

(
F ′(k)− ρ

)
c(k) (4)

which should be easier to manipulate. We are looking for the solution c(k) to (4).

Methodology. �e key to the method outlined is the following:

1. �x k,

2. assume a functional form for c(k) around this point,

3. solve (4) by imposing that this form holds “locally”, as described below.

6

Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006) compare a variety of numerical methods for the discrete-time

version of this model with a stochastic productivity.
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For simplicity, we choose a linear form
8

c(k̃; k) = c0(k) + c1(k)(k̃ − k) (5)

First, from (4) and (5) we obtain

c1(k)
(
F (k)− c0(k)

)
=

1

θ

(
F ′(k)− ρ

)
c0(k) (6)

Implicit di�erentiation by k yields

c′1(k)
(
F (k)− c0(k)

)
+ c1(k)

(
F ′(k)− c′0(k)

)
=

1

θ

[
F ′′(k)c0(k) +

(
F ′(k)− ρ

)
c′0(k)

]
(7)

�e method makes two assumptions. First, we impose that the approximation is valid locally around k:

c′0(k) = c1(k) (8)

�is would hold if the c(k̃; k) was tangent to the approximated policy function c0(k). Also, we impose

that for a small change in k, there is no �rst-order change in the approximating slope c1(k):

c′1(k) = 0 (9)

�is is a crucial assumption, as it basically imposes no curvature. �e accuracy of the method will be

determined by how realistic these assumptions are. Using (8) and (9), (7) becomes

c1(k)
(
F ′(k)− c1(k)

)
=

1

θ

[
F ′′(k)c0(k) +

(
F ′(k)− ρ

)
c1(k)

]
(10)

For each k, we solve the system of (5) and (10). Note that in contrast to perturbation methods, (10)

still takes the local curvature of F into account, contributing to the accuracy of the method. When

comparing to projection methods, it is important to note that the consistent local approximation does

not rely on knowing the solution at other gridpoints, which is advantageous for problems which su�er

from the curse of dimensionality.

Numerical methods. Note that the system (6) and (10) is quadratic. Using random starting points

and quasi-Newton methods,
9

I generally found three solutions: the “right” one (c1(k), c0(k) > 0), a

trivial one c1(k) = c0(k) = 0, and an an economically nonsensical one (with c1(k) < 0). Consequently,

reformulating the problem and investing time in �nding good initial guesses is bene�cial. Using (3) rules

out the zero solution. Also note that since the steady state capital can be obtained as

ks =

(
δ + ρ

Aα

)1/(α−1)

and cs = c0(k) = F (ks), an exact solution can be easily solved for at the steady state. However, even

with seemingly sensible initial guesses,
10

the quasi-Newton solver frequently converged the nonsensi-

cal root, so I used the following simple continuation method:

1. for a k near ks, use initial guesses c0(k) = cs, and c1(k) from (10),

2. for other k, �nd a nearby k̃ for which we have solved the problem, and use c0(k̃), c1(k̃).

8

Den Haan, Kobielarz, and Rendahl (2015) argue that higher-order approximations would give even be�er accuracy. How-

ever, since the most di�cult part is solving the resulting nonlinear system, there is a trade-o� between accuracy and pro-

grammer time. �at said, exploring Padé approximations would be interesting.
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For comparison, I also solve (3) using a collocation method with 10 Chebyshev polynomials, using

a quasi-Newton solver with linesearch and the initial guess

c(k) = c(ks)
k

ks
(11)

�is is very accurate and will be useful for comparison. I refer to the collocation solution as the “exact”

solution ĉ(k), since the approximation error has no practical relevance.

Solution and discussion. I solve on the range k ∈ (0.2ks, 2ks), with parameters A = 1, α = 0.3,

ρ = 0.02, δ = 0.05, θ = 2. �is solution is referred to in the graphs as “collocation”, while the method

discussed in this paper is labeled as “consistent local”.

Figure 1 shows the policy function. �e deviation from the exact solution is small but visible,

with the exact solution method overpredicting consumption both above and below the steady state.

More importantly, as can be seen in Figure 2 which shows the same comparison for c1(k) and and

ĉ′(k), the consistent local method overpredicts c′(k) above and underpredicts it below the steady state,

respectively. Also, note that (9) is violated since c1(k) appears to have signi�cant curvature.

Figure 3 checks (8) by plo�ing c1(0) and c′0(k), calculating the la�er from a local quadratic curve.

While (8) holds at the steady state by construction, it is violated signi�cantly the further we move from

the steady state: as k approaches 0, c′0(k) ≈ 2c1(k). If we are aiming for a globally accurate solution,

(8) turns out to be an unreasonable assumption. Figure 4 shows c0(k), but with tangents drawn using

c0(k) and c1(k). �is is another graphical illustration of the volation of (8).

Figures 5 and 6 show the residual of (3) for the consistent local and collocation methods, respec-

tively. Graphing this residual is a standard procedure of evaluating collocation methods (Boyd 2001;

Judd 1998), since the residual can be considered as a unitless prediction error. Note that because of the

errors discussed above, the consistent local method displays relatively low accuracy when compared

to collocation methods, however, the residual is still small for practical purposes.

One remarkable feature of the consistent local method is that because of its locality, it does not break

down as k → 0, in contrast to collocation methods, which require transformations or more gridpoints

in areas of high curvature. �is again makes it ideal for initial guesses and exploratory analysis.

Conclusion. I examined the accuracy of the method proposed by Den Haan, Kobielarz, and Rendahl

(2015) in the context of a simple continuous time Ramsey model, and found that it is much less accurate

than collocation methods. Note, however, that the method is still reasonably accurate, and since it can

be implemented very easily, it may be a good �rst pass approach to study the solution of functional

equations. In particular, it can be used for exploratory analysis, or to provide initial guesses for non-

linear solvers in collocation methods, and since it can be evaluated at any points, it can also be used

to check the assumptions about functional forms that underlie more complex methods, such as sparse

grid approximations (Judd et al. 2014). �e only part which requires more care is solving the nonlinear

system. With these in mind, the method may be a useful addition to our toolkit for solving functional

equations in economics.
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Figure 1: Policy functions (consistent local:

dashed, collocation: solid, steady state: dot).
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Figure 2: c1(k) for consistent local approximation

(dashed), c′(k) for collocation (solid), steady state

(dot).
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Figure 3: c1(k) (solid) and ∂c0(k)/∂k (dashed),

the la�er calculated from a local quadratic ap-

proximation.
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Figure 4: Policy function c0(k), with tangents

drawn according to c1(k).
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Figure 5: Residual of equation (3) for the consis-

tent local method.
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Figure 6: Residual of equation (3) for the colloca-

tion method, with collocation nodes.
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