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Overview

goal of the course: estimating DSGE models
toolkits exist, Dynare is very commonly used, we will use it too
the process is simple, but far from automatic
things can break very easily
fixing problems and understanding the results requires some
theoretical/practical background
this course is 90% about giving the general background from a
theoretical and practical perspective, 10% about the mechanics of
Dynare
the latter you can easily pick up from the manual once you understand
the background (Griffoli 2013)
this course is an introduction, serves as a starting point
after this course, you should read the literature and replicate papers

If you only read a single article, make it the handbook chapter of
Fernández-Villaverde, Rubio-Ramírez, and Schorfheide (2016).
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Course plan

elements Bayesian statistics for this part, the recommended textbook is
Gelman et al. (2013)

numerical methods Markov Chain Monte Carlo (MCMC)
the Kalman filter † forming a likelihood for DSGE models
using Dynare † some practical advice
detailed discussion of papers † Christiano, Eichenbaum, and Evans (2005)

and Smets and Wouters (2007)

†: these parts have no or incomplete slides as I was using the blackboard,
papers, or running examples. For the Kalman filter, see Särkka (2013). The
data appendix of Smets and Wouters (2007) has data and Dynare code for
replication.

Tamás K. Papp (IHS) — Estimation of DSGE models 3 / 62



The physicist’s twins

1 sonogram: a physicist is pregnant with twins, both are boys
2 what is the probability that they are identical or fraternal?
3 doctor: 1/3 of twin births are identical, 2/3 are fraternal
4 we know that identical twins are always same sex
5 fraternal twins same sex with 1/2 probability

p(iden | same) = p(iden, same)
p(same) =

p(same | iden)p(iden)
p(same) =

p(same | iden)p(iden)
p(same | iden)p(iden) + p(same | frat)p(frat) =

1 · 1/3
1 · 1/3 + 1/2 · 2/3

=
1

2

We can also do this with a table (for discrete examples).
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Concepts in this example

prior The probabilities from the doctor, presumably from a large
number of observations. It is a distribution, which is a
function of the states which integrates to 1: here

p(iden) = 1

3
p(frat) = 2

3

data twin pregnancy, both boys
likelihood Probability of same sex conditional on identical/fraternal.

Also a distribution, in full

p(same | iden) = 1 p(diff | iden) = 0

p(same | frat) = 1

2
p(diff | frat) = 1

2

posterior the distribution we obtain from the exercise, here

p(iden | same) = 1

2
p(frat | same) = 1

2
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Concepts in general: prior, likelihood, posterior

The fundamental question: after I have seen the data, what do I think
about the parameters that generated it?
Data y, parameters θ. They have a joint distribution

p(θ, y) = p(θ)p(y | θ)

You can also do
p(θ, y) = p(y)p(θ | y)

Then
p(θ | y) = p(θ)p(y | θ)

p(y)

aka “Bayes’s rule”. Also note that

p(y) =

∫
θ
p(y, θ)dθ =

∫
θ
p(θ)p(y | θ)dθ

so you only need to know p(y), p(y | θ).
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Bayes’s rule

p(θ | y) ∝ p(θ)p(y | θ)

where
1 p(θ) is the prior: what you know (assume) about the parameters before

you have seen the data.
2 p(y | θ) is the likelihood: summarizes the data generating process (ie

your model).
3 p(θ|y) is the posterior: what you think about the parameters after you

have seen the data.
4 the notation ∝ reads as “proportional to”, ie up to a constant (usually

irrelevant for numerical methods). We can always find the constant by
integrating.
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Bayesian inference in practice

Commonly used models p(y | θ) which are either convenient to use, or
have desirable (numerical) properties. Latter used to be a key
question before numerical methods, now less relevant. We will
see some examples from statistics, but DSGE models are in
general intractable analytically.

What to do with the posterior? We usually sample a collection of
parameter values θ numerically from the distribution.
Methodology: Markov Chain Monte Carlo (MCMC).

The art of prior distributions. The less data we have, the more priors
influence the result. Ideally, we would prefer to avoid this.
But macro data is usually shorter and less informative than we
would like; also, structural parameters may be weakly
identified.
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Example: univariate normal, known variance

We have n observations yi, i = 1, . . . , n, with distribution

yi ∼ N(µ, 1)

where N is the normal distribution, µ is its mean, and we assume that the
variance is known.
Recall that the density of N(µ, σ2) is

p(yi | µ, σ2) =
1√
2πσ2

exp

(
−(yi − µ)2

2σ2

)
Here σ2 = 1, and we ignore the constant,

p(yi | µ) ∝ exp

(
−1

2
(yi − µ)2

)
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Example: univariate normal, known variance (cont)

We use y = {yi}ni=1 for the whole sample. Since it is IID,

p(y | µ) =
n∏

i=1

p(yi | µ)

is the likelihood for the whole data.
Logarithms give us analytical convenience (also better numerically):

log p(y | µ) =
n∑

i=1

log p(yi | µ) = −1

2

n∑
i=1

(yi − µ)2+C

For now, use a flat (improper) prior
p(µ) ∝ 1

This is “improper” because it is not a distribution (integral is ∞).
Then the (log) posterior is

log p(µ | y) = −1

2

n∑
i=1

(yi − µ)2+C
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Example: univariate normal, known variance (cont)

Introduce the sample mean

ȳ =
1

n

n∑
i=1

yi

Then

log p(µ | y) = −1

2

n∑
i=1

(yi − µ)2 = −1

2

n∑
i=1

(yi − ȳ + ȳ − µ)2 =

−1

2


n∑

i=1

(yi − ȳ)2 + 2(ȳ − µ)

n∑
i=1

(yi − ȳ)︸ ︷︷ ︸
≡0

+n(ȳ − µ)2

 = −1

2
n(ȳ−µ)2+C

We recognize this as a univariate normal distribution, ie
µ | y ∼ N(ȳ, 1/n)
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Example: univariate normal, known variance (cont)

What to take away from this example?
1 if you have n observations with mean ȳ, after seeing them your

posterior distribution is

µ | y ∼ N(ȳ, 1/n)

This is a distribution, not a point estimate.
2 It is centered on the sample mean.
3 The standard deviation is n−1/2, decreasing with the square root of the

sample size. Asymptotically, as n → ∞, it would go to 0.
4 Here, we recognized the posterior distribution as a member of a known

family. Generally, this need not be the case.
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Improper prior distributions

Bayes’s rule works for distributions, ie densities (or more generally,
measures) that integrate to 1 over the domain.
When this does not hold, we may still obtain a proper posterior
distribution as in the example above. But this does not work generally.
Checking that a distribution is proper is equivalent to integrating it.
However, our usual methods (MCMC) break down for improper
distributions, so we can’t use them.
It is best to avoid improper prior distributions in practice.
Generally, use weakly informative priors. For example, suppose that

µ = unemployment rate ∈ [0, 1]

A prior µ ∼ N(0, 102) would not constrain the parameter.
With weakly informative priors, it helps to standardize data.
In economics, with little data, sometimes we need to use more
informative priors. More on this later.
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Conjugate priors: example

We continue with the univariate normal example. Instead of using the
improper prior, let’s assume

µ ∼ N(µ0, τ
2)

so that
log p(µ) = −(µ− µ0)

2

2τ2
+C

The (log) posterior is

log p(µ | y) = −1

2
(n+ 1/τ2)

(
µ− nȳ + µ0/τ

2

n+ 1/τ2

)2

+C

or equivalently,

µ | y ∼ N

(
nȳ + µ0/τ

2

n+ 1/τ2
,

1

n+ 1/τ2

)
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Conjugate priors: example (cont)

To summarize, from prior

µ ∼ N(µ0, τ
2)

we obtain the posterior

µ | y ∼ N

(
nȳ + µ0/τ

2

n+ 1/τ2
,

1

n+ 1/τ2

)
Both the prior and the posterior come from the same distribution family.
We say that this is a conjugate prior for this likelihood function.

1 Conjugate priors used to be important because of analytical
convenience before the computational revolution of Bayesian statistics.

2 Not all models have a conjugate prior, and there is no strong reason to
restrict ourselves when using MCMC.
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Asymptotics

Still with the same prior and likelihood, consider the posterior

µ | y ∼ N(µ1, σ
2
1) with µ1 =

nȳ + µ0/τ
2

n+ 1/τ2
, σ2

1 =
1

n+ 1/τ2

naming the posterior mean and variance µ1 and σ2
1, respectively.

1 the posterior mean is a weighted average of the prior mean µ0 and the
sample mean ȳ, with weights n and 1/τ2,

2 as n → ∞, µ1 → ȳ and σ2
1/n → 1

3 in the limit τ2 → ∞, we obtain the flat prior p(µ) ∝ 1

There are results in Bayesian statistics about asymptotic normality and
consistency, similar to frequentist statistics. They are nice to know, but
usually of limited value in macroeconomics (where we have little data).
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Some prior-posterior combinations (still the same model)

Let ȳ = 1, µ0 = 0, vary n and τ . Legend: posterior , prior .
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Dogmatic priors

a dogmatic prior assigns zero density (probability) to otherwise feasible
regions of the parameter space
from Bayes’s rule, p(θ) = 0 ⇒ p(θ | y) = 0
even asymptotic convergence does not work for dogmatic priors
suppose ȳ = 1, n = 10, prior is θ ∼ N(0, 102) truncated to (∞, 0]
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prefer informative priors, check your model
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Monte Carlo methods

1 Assume we have obtained an unnormalized posterior

f(θ) ∝ p(θ | y)

for a specific dataset y. f is generally intractable.
2 We would like to draw θs ∼ f , s = 1, . . . , S from this distribution.
3 Then for a function h(θ),

E[h(θ) | y] =
∫

h(θ)p(θ | y)dθ ≈ 1

S

∞∑
s=1

h(θs)

4 these are simulation (“Monte Carlo”) methods, usually with a computer
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Sampling from distributions

for known distributions, this is relatively easy
for univariate distributions,

F (θ) =

∫ θ

−∞
f(θ̃)dθ̃ ⇒ F−1(U) ∼ f if U is uniform on [0, 1]

for general distributions, most effective methods construct a Markov
chain that has a stationary distribution f

other methods exist, they are less relevant for DSGE models
efficient methods are an active research area in Bayesian statistics (we
talk about efficiency below)
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Markov chains

1 a stochastic sequence xt

2 Markov property:

p(xt+1 | xt, xt−1, . . . ) = p(xt+1 | xt)

3 there are Markov chains in discrete and continuous time, with discrete
and continuous state spaces for x

4 in Bayesian statistics, we use discrete time, continuous state sequences
(mostly); for the examples, I use discrete states

5 most of the time we care about the stationary distribution π(x)

π(x′) =

∫
π(x)p(x′ | x)dx

and hope that actual samples from the chain are representative of π
6 in MCMC, we construct p for a particular π
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Discrete example

Two states, 1 and 2. p(2 | 1) = α, p(1 | 2) = αβ. Transition matrix:

P =

[
1− α α
αβ 1− αβ

]
Looking for π such that

π = πP,
∑

πi = 1

Doing the algebra,

π1 = π1(1−α)+(1−π1)αβ ⇒ π1(α+αβ) = αβ ⇒ π1 =
β

1 + β

independent of α (this was intended, and is specific to this example).
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Convergence and mixing

Under some technical conditions, the distribution of xt+N converges to
π as N → ∞.
Here, we don’t go into technical details, just illustrate how this works
in practice. Continue with our example with β = 1/2, starting x0 = 1,
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Pathologies: reducibility

The chain is irreducible if it is possible to get from any state to any
state.
It is easy to show that all distributions are stationary distributions for

P =

[
1 0
0 1

]
Practically, once the above chain is in a state, it is stuck there. When
α ≈ 0 in the previous example, the chain is irreducible in theory, but
may not mix well in practice.
Let P1 and P2 be transition matrixes, and

P =

[
(1− ε1)P1 ε1I

ε2I (1− ε2)P2

]
If ε1 = ε2 = 0, chain has mixing within, but not between the two sets
of states. For ε1, ε2 ≈ 0, mixing is again problematic in practice.
Something similar can easily happen when estimating DSGE models.
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Pathology: periodicity
If ∃k and a state such that the chain returns to the same state in k number
of steps. Example (all states have period 3):0 1 0

0 0 1
1 0 0



Pathology: transience
If there are states for which there is a non-zero probability what we never
return. Example: [

1 0
0.5 0.5

]

Neither of the above is a concern in practice for MCMC with common
setups.
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Detailed balance

Detailed balance holds for a distribution π and a transition matrix P if

πipij = πjpji for all states i, j

If we have an irreducible, aperiodic, non-transient Markov chain, and
detailed balance holds, then π is the steady state distribution of P .

Proof (sketch)

∑
i

πipij =
∑
i

πjpji = πj
∑
i

pji = πj

so πP = π.

We use detailed balance as a proof technique in MCMC.
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Metropolis algorithm

Uses a proposal distribution J(θ∗ | θ) that is symmetric

J(θa | θb) = J(θb | θa)

to sample from a density f (for concreteness, think of θa ∼ N(θb,Σ)).

Algorithm

1 use a starting point θ0, for which f(θ0) > 0

2 at step t, sample a proposal θ∗ from J(θ∗ | θt), and let

r =
f(θ∗)

f(θt)

3 let

θt+1 =

{
θ∗ with probability min(r, 1)

θt otherwise
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Why the Metropolis algorithm works

We show detailed balance. WLOG assume f(θb) ≥ f(θa), and let P (θa, θb)
denote the transition kernel from θa to θb. Then

f(θa)P (θa, θb) = f(θa)J(θb | θa)

and

f(θb)P (θb, θa) = f(θb)J(θa|θb)r = f(θb)J(θa|θb)
f(θa)

f(θb)
= f(θa)J(θa | θb)

Then symmetry of J implies detailed balance.

Metropolis-Hastings
This can be extended to non-symmetric J with a correction factor. This is
known as the Metropolis-Hastings algorithm.
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Random walk Metropolis-Hastings (RWMH)

use a multivariate normal proposal

θ∗ ∼ N(θ,Σ)

which is symmetric by construction.
what should Σ be?
this depends on the distribution, and involves various trade-offs
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f = N(0, 1), J = N(0, 1)
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f = N(0, 1), J = N(0, 0.1)
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f = N(0, 1), J = N(0, 5)
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Bimodal example with a “valley”

x =

{
∼ N(−1, 0.1) with probability 1/2,
∼ N(1, 0.1) with probability 1/2
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Bimodal example, J = N(0, 0.1)
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Bimodal example, J = N(0, 1)
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Bimodal example, J = 0.3 ·N(0, 1.5) + 0.7 ·N(0, 0.1)
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Commonly used solutions for selecting Σ

Approximation at the mode

1 find a (local) maximum (mode)
2 obtain the Hessian of the log posterior
3 use this for calculating Σ (essentially pretending that the distribution is

locally normal)
4 scale this for better acceptance

This is quick, but can easily fail (cf bimodal example).

Adaptive algorithms

1 choose an initial Σ, either I or with local approximation
2 sample using this, monitoring acceptance rate and variance of sample
3 adjust Σ accordingly

Adaptation phase samples cannot be used as it violates detailed balance.
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Effective sample size

Suppose you have n independent random draws xi from some distribution,
and want to approximate the mean as

E[x] = x̄ =
1

n

N∑
i=1

xi

Then
Var(x̄) =

Var(x)

n

However, if xi are not independent, but autocorrelated, then n is replaced
by

neff =
n

1 + 2
∑∞

t=1 ρt

where ρt are autocorrelations. These can be estimated from the sample.

neff/n is an excellent diagnostic tool
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Assessing mixing: R̂

Suppose you started m MCMC chains, each for length n, for some scalars
xij for i = 1, . . . , n, j = 1, . . . ,m. Let

x̄·j =
1

n

n∑
i=1

xij x̄·· =
1

m

m∑
j=1

x·j s2j =
1

n− 1

∑
(xij − x̄·j)

2

B =
n

m− 1

m∑
j=1

(x̄·j − x̄··)
2 W =

1

m
s2j

for variance between and within chains. Estimate the total variance as

V =
n− 1

n
W +

1

n
B

and define

R̂ =

√
V

W

Note R̂ ≥ 1, and as n → ∞ we have R̂ → 1.
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Strategy with multiple chains

1 start 3–5 overdispersed chains
2 calculate neff/n

3 calculate R̂, suspect problems if larger than 1.05

We continue our example with the N(0, 1) distribution, sampling a normal
J with standard deviation σ.
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R̂ and effective sample size with σ = 1
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R̂ and effective sample size with σ = 0.1
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R̂ and effective sample size with σ = 5
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RWMH in practice

even after careful tuning, it may be difficult to get good mixing and
convergence from RWMH
both can easily get much worse if the dimension of the parameter
space increases
many sharp local modes can be very problematic
“folk theorem of statistical computing” by Andrew Gelman:

When you have computational problems, often there’s a
problem with your model.

better algorithms exist, using local information (derivatives)
various reparametrization tricks may speed up convergence
but these are not yet easy to use for DSGE estimation
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Debugging MCMC

Use fake/simulated data. This should be the first step in any estimation
problem by default, even when not debugging. Systematic approach:

1 pick a θ,
2 simulate y | θ,
3 sample the posterior θ | y,
4 compare quantiles (systematic) or means (exploratory)

fix/unfix parameters one by one
poor convergence and mixing is usually a warning sign that something
is wrong
proceed from simpler models to more complex models
Dynare specific: pay attention to warnings
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The “dangers” of Bayesian inference

provided you have a proper posterior and a good MCMC algorithm (or
are willing to wait long enough), you can estimate any model on any
remotely compatible data
even if the model does not remotely resemble the data
usually, models fit some features of the data well, others not so well
need to decide if those are important, to improve or replace the model
in social science, no models are “true”, all are approximations
convenience motivates modeling choices, this may or may not be
problematic
trade-offs between model convenience and accuracy
never stop at estimating the model, spend at least as much time on
model checking (especially posterior predictive checks)
understanding results in the context of the literature
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Posterior odds

used in Bayesian econometrics (esp. DSGE), with some problems
two competing models M1 and M2

relative posterior probabilities
p(M2 | y)
p(M1 | y)

=
p(M1)

p(M2)
· Bayes factor(M2,M1)

captures the relative effect on the posterior independently of the prior
only applicable for two models

Bayes factor(M2,M1) =
p(y | M2)

p(y | M1)
=

∫
p(θ2 | M2)p(y | θ2,M2)dθ2∫
p(θ1 | M1)p(y | θ1,M1)dθ1

can work well if we really have two discrete models
doesn’t work well when the models are part of an inherently continuous
family; can’t use with improper priors, sensitive to limit priors
not very robust to priors and likelihoods in a continuous setting
recommendation: embed models in a continuous setting instead
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Posterior predictive checks

idea: compare features of simulated data to the actual data
very versatile and powerful tool
easy to apply: just simulation
key idea: test statistic T (y, θ), a function of the data (which can be
simulated), and the estimated parameters
recall classical p-value

Pr(T (yrep) ≥ T (y) | θ)

we generalize this to a Bayesian p-value
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Posterior predictive checks (cont)

define joint distribution for replicated data and parameter

p(yrep, θ | y) =
likelihood/model︷ ︸︸ ︷
p(yrep | θ) p(θ | y)︸ ︷︷ ︸

posterior

this is usually done with simulation: for each posterior draw θi,
simulate a yrep

i

Bayesian p-value is defined as

pB = Pr(T (yrep, θ) ≥ T (y, θ) | y)

over the joint distribution p(θ, yrep | y), ie

pB =

∫ ∫ [
T (yrep, θ) ≥ T (y, θ)

]
p(yrep | θ)p(θ | y)dyrepdθ

convention: when pB > 0.5, use 1− pB
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Posterior predictive checks: example

generate IID data i = 1, . . . , 100 from

yi ∼ t(0, 1, 5)

estimate the misspecified model

yi ∼ N(µ, σ2)
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Picking a test statistic

For data y, define
T (y) =

q75% − q25%
std(y)

This is normalized by the scale, yet the quantiles should be informative. It is
also independent of θ.
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In this case, pB ≈ 0.
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Practical advice on posterior predictive checks

consider multiple test statistics
200 replications are OK, 1000 are plenty: if pB is small (≤ 0.05), the
exact value is not that relevant
save computation: for each replication, calculate the multiple T s
plot T as a histogram (when independent of θ) or a scatter plot

Be creative with salient features of the data

the probability of “large” movements in time series
T can come from point estimates of simple models on the data
when does a VAR impulse response peak?
approximate half lives

Tamás K. Papp (IHS) — Estimation of DSGE models 52 / 62



Dynare

a software suite that can solve, simulate and estimate DSGE and
similar models
http://www.dynare.org/, free and open source software
can automate mechanical steps …
…but requires an understanding of the methodology
many prominent researchers contribute cutting-edge methods
has an extensive manual (200 pages) and user guide, these should be
studied in detail
additional model examples with data at
http://macromodelbase.com/
friendly forums at https://forum.dynare.org/
some papers that use Dynare have code in an appendix, replication is a
good way to learn
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Running Dynare

primarily with Matlab (a bit faster) or Octave (free software)
model and operations are described by a model file
then call it as
dynare modelfile.mod [options]
this generates model.m and similar interim files
warning and error messages are usually very informative
results end up in global variables like oo_, see the documentation on
its structure
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Frequently used distributions built into Dynare

uniform U(a, b)

normal N(µ, σ2)

beta Beta(α, β)
gamma Gamma(α, θ)

inverse gamma InvGamma(α, β)

Note: alternative parametrizations exist, eg N(µ, σ). Always check
documentation of the relevant software, sometimes you will need to
translate.
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Uniform distribution U(a, b)

Useful for vague priors. Reasonable option for initial exploration.

f(x; a, b) =
[a ≤ 1 ≤ b]

b− a
E[x] =

a+ b

2
std[x] =

b− a√
12
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Normal distribution N(µ, σ)

Location µ, scale σ > 0. Useful for vague priors on R. See also:
multivariate normal.

f(x;µ, σ) ∝ exp

(
−1

2

(
x− µ

σ

)2
)

E[x] = µ std[x] = σ
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Gamma distribution Gamma(α, θ)

Shape α, scale θ. For priors on R+.

f(x;α, θ) ∝ xα exp(−x/θ)[x > 0] E[x] = αθ std[x] =
√
αθ

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

de
ns

ity

Gamma(1, 2)

Gamma(5, 2)

Gamma(9, 0.5)

Tamás K. Papp (IHS) — Estimation of DSGE models 58 / 62



Inverse gamma distribution InvGamma(α, β)

Shape α > 0, scale β > 0. Some examples use InvGamma(0.01, 0.01) for
vague variance priors, avoid this, inference can be very sensitive to it
(Gelman 2006). When x ∼ Gamma(α, β), 1/x ∼ InvGamma(α, β).

f(x;α, β) ∝ x−α−1 exp(−β/x)[x > 0]

E[x] =
β

α− 1
(α > 1) std[x] =

β

(α− 1)
√
α− 2

(α > 2)
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Beta distribution Beta(α, β)

Shape α, β > 0. Useful for parameters on intervals (eg [0, 1], or transform).
Multivariate generalization: Dirichlet.

f(x;α, β) ∝ xα−1(1− x)β−1[0 ≤ x ≤ 1]

E[x] =
α

α+ β
std[x] =

√
αβ

(α+ β)
√
α+ β + 1
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Further reading

Särkka (2013) on the Kalman filter and smoother
Sims and Zha (1998) on Bayesian VAR
Herbst and Schorfheide (2015) on Bayesian DSGE estimation in general
Sims, Waggoner, and Zha (2008) for marginal likelihood calculations
Berger et al. (1988) for a detailed discussion of statistical principles

Credits for materials used from other sources

The physicist’s twins example is from Efron (2005).
Discussion from R̂ and neff follows Gelman et al. (2013).
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